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1. INTRODUCTION 

This  study  considers  the  design  and  digital  simulation of an integrated fault 

tolerant  system (FTS) using  analytic  redundancy  for  avionics  sensors  on  the NASA- 

Langley  Research  Center  Advanced  Transport  Operating  Systems (ATOPS) Transport 

Systems  Research  Vehicle (TSRV) in a Microwave  Landing  System (MLS) environment. 

The  overall  objective of the  fault   tolerant  system  is   to  provide  reliable  estimates  for 

aircraft  position,  velocity,  and  attitude  in  the  presence of possible  failures  in  ground- 

based  navigation  aids,  and  on-board  flight  control  and  navigation  sensors. '   The 

estimates,  provided  by  the  fault  tolerant  system,  are  used by  a  fully  automated 

guidance  and  control  system  to  land  th,e  aircraft  along  a  prescribed  path.  Sensor 

failures  are  identified  by  utilizing  the  analytic  relationship  between  the  various  sensor 

outputs   ar is ing  f rom  the  a i rcraf t   equat ions of motion [l]. 

An aircraft sensor  fault  tolerant  system  design  methodology is developed  by 

formulating  the  problem  in  the  context of simultaneous  state  estimation  and  failure 

identification  in  discrete  time  nonlinear  stochastic  systems.  The  resulting  sensor  fault 

tolerant  system  consists of 1) a no-fail  estimator,  implemented as an  extended Kalman 

fi l ter  (EKF) based  on  the  assumption of no  failures,  which  provides  estimates  for 

aircraft   state  variables  and  normal  operating  sensor  biases;  2) a bank of detectors  

which  are first order  filters  for  estimating  bias  jump  failures  in  sensor  outputs; 3) 

likelihood  ratio  computers;  and 4) a decision  function  which  selects  the  most  likely 

' I n t e g r a t e d  FTS r e f e r s   t o   t h e   c a p a b i l i t y   o f   h a n d l i n g  a1 I o f   these   th ree   d i f fe rent   sensor  
s u b s e t s   s i m u l t a n e o u s l y   i n   c o n t r a s t   t o   e a r l i e r   s t u d i e s   i n   w h i c h   o n l y  one  subset  such  as 
f l i g h t   c o n t r o l   o r   n a v i g a t i o n   s e n s o r 3   a r e   c o n s i d e r e d .  

1 



failure  mode  based  on  the  likelihood  ratios. 

The  operation of the  faul t   to lerant   system is as follows:  First,  the EKF' computes 

estimates  for  aircraft   posit ion,   velocity,   at t i tude,   horizontal   winds,   and  normal 

operating  sensor  biases  on  the  assumption of no  sensor  failures.  The residuals of this 

EKF drive  a  bank of detectors,  where  each  detector  has  been  designed  to  estimate  a 

postulated  bias  jump  failure  for  a  given  sensor.  Then,  a  multiple  hypothesis  testing 

procedure is employed to  decide  whether  the EKF is  operating  with  healthy  sensors or 

under  one of the  hypothesized  failed  sensor  modes.  The  multiple  hypothesis  test 

selects  the  most  likely  failure mode based on the  likelihood  ratios  which  are  computed 

using  the  bias jump  failure  estimates  from  the  detectors. When a  failure is declared 

by  the  decision  logic,   the  f i l ter-detector  structure  is   reconfigured by eliminating  the 

failed  sensor,   making  the  appropriate  changes in the  no-fail   f i l ter   and  detectors,   and 

reinitializing  the  likelihood  ratios  and  a  priori  probabilities. 

The  no-fail  filter  is  implemented  in  a  rectangular  coordinate  system  with  origin 

on  the  runway by using  a new separated  bias EKF algorithm  which  has  been  obtained 

by extending  the  known  results  for  the  l inear  case  to  nonlinear  systems. Body 

mounted  accelerometers  and  rate gyros form the  inputs   into  the EKF, while MLS range, 

azimuth,  elevation  measurements, IAS (indicated  airspeed),  and IMU (inertial 

measurement  unit)  attitude  outputs  are  utilized  as  measurements  by  the EKF. 

Alternatively,  an RSDIMU (dual  fail-operational  two-degree-of-freedom  strapdown 

inertial  measurement  unit [SI) can  be  used  instead  of  a  platform IMU and  the  body 

mounted  accelerometers  and  rate  gyros.  The function of the  no-fail  filter is similar 

t o   t h a t  of a  navigator  coordinatized  in  a  local  runway  frame of reference.  Whereas 

2 



traditional  navigation  equations  usually  involve  open  loop  integration of the  body 

accelerations  in  the  runway  frame  with  occasional  posit ion  and  velocity  f ixes,   the  no- 

fail EKF in  our  study  performs  the  position,  velocity,  and  attitude  updates 

continuously  in  a  closed  loop  fashion. 

The  proposed  filter-detector  structure  is  computationally  feasible.  The 

integrated  sensor  FTS design  requires a single  high  order EKF (no-fail  filter).  The 

state  estimation  and  failure  detection.  performance of the  developed  sensor  fault 

tolerant  system is analyzed  by  using  a  nonlinear  six-degree-of-freedom  simulation of 

t he  TSRV aircraft .  

In th i s   repor t ,  we will discuss  the  failure  detection  and  isolation (FDI) 

performance of the  system  using  a  dual-redundant  sensor  configuration. In par t icular  

the  system will be  shown  capable of detecting  failures  even i f  only  one  sensor of a 

given  type  remains. 

The sensor  fault  tolerant  algorithm  developed  here  has  been  incorporated  into  a 

computer  program  called FINDS (Fault  inferring  Nonlinear ' Detection  System)  which is 

described  in  detail  in [2]. The  simulation  portion of the  software is essentially  an 

integrat ion of t he  NASA-LRC supplied TSRV and RSDIMU computer  simulation  programs. 

Arcraft  sensor  models  have  been  developed  and  appended  into  the  simulation  to 

provide  more  realistic  normal  operating  errors.  Furthermore,  sensor  failure  models  for 

increased  bias,  hardover,  null,  scale  factor,  ramp,  and  increased  noise  type  sensor 

malfunctions  have  also  been  assimilated  into  the  software. 
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The  simulation  results  indicate  that  the  no-fail EKF estimation  errors  compare 

favorably  to  those  obtained with other  types of navigation  filters  employed  in  the  same 

MLS environment.  Sensor  failure  detection  performance of the  fault  tolerant  system is 

excellent  for  the EKF measurement  sensors  such  as MLS, IAS, and M U ,  while the  failure 

detection  speed  for  the EKF input  sensors  such as accelerometers  and  rate  gyros  has 

been  found  to  be  slower  than  that of measurement  sensors. 

1.1 Relation t o  Previous Work 

Here, we will discuss  the  differences  between  the  major  aspects of  FINDS and 

earlier  sensor  failure  detection  studies  such as the  nonlinear  multiple  hypothesis 

testing  approach,  reported  in [20]-[21], F-8 DFBW [25], DIGITAC A7 [ 2 4 ] ,  and  the 

RSDIMU [23] FDI studies. 

o sensor complement 

FINDS is an  integrated FTS in  the  sense  that  failures  in  on-board  flight  control 

as well as inertial  sensors  and  ground-based  navigation-aid  instruments  are 

considered.  For  instance, FINDS can  detect  not  only a fault  in  an  on-board MLS 

receiver,  but  also a fault  in  the  ground-based  transmitting  antenna  for  that  receiver. 

FINDS can  operate  without  any  hardware  redundancy  in  that  it  can  detect  failures 

even if there  remains  only  one  sensor of a given  type. 

In contrast ,   earl ier  studies  are  concerned with  only a single  subset of the  sensor  

complement  considered  here. For instance,   the F-8 and DIGITAC A-’7 studies  deal with 

flight  control  sensors  only  and  the RSDIMU  FDI considers  failures  only  in  inertial 
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sensors.  F-8 FDI requires  dual  sensor  redundancy so that ,  if  only  one  sensor of a 

given  type  remains  in  the  configuration,  then  the  failure of that  sensor  cannot  be 

detected. 

o FDI algorithm structure 

FINDS has  a single  large  order  estimator  (no-fail  filter)  driven  by  all  the  sensor 

outputs.  Failures  are  identified  by  analyzing  the  signature of sensor  faults  on  the 

no-fail  residuals by processing  the  residual  sequence  through a bank of first-order 

detectors.  The estimator/detector  structure in FINDS is  an  extension of the  s t ructure  

used  in  [27]  to  nonlinear  dynamic  systems. 

In contrast,  the  nonlinear  multiple  hypothesis  testing  approach  [21]  requires  the 

implementation of M + l  (where M is  the  total  number of sensors)  large  order  estimators 

(each of which has  complexity  equal  to  the  no-fail  filter  in FINDS). In F-8 FDI, each 

sensor  output  is  estimated by using a subset of the  other  available  sensor  types  in 

order  to  have  three  voting  sensors (2 hardware/l  analytically  constructed).  Hence, 

the  number of filters  (each with a different  order  depending  on  the  analytic 

relationships  used)  are  equal  to  the  number of sensor  types. In DIGITAC A7, several 

different  filter  assemblies of varying  orders with comparators  are  used. 

o treatment of nonlinearities 

FINDS analyzes  the  residuals of a nonlinear  no-fail  filter  by  processing  them 

through  nonlinear  detectors  to  find  sensor  faults. One advantage of using  nonlinear 

filters is that  the  fault  tolerant  system  is  independent of the  flight path so that   i t  
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does  not  need  gain  scheduling. 

On the  other  hand,  the  nonlinear  f i l ter   residuals  in [21] are  directly  used  in  the 

likelihood  ratio  computations  without  any  processing.  Similarly,  in  F-8 FDI, some 

nonlinear  filters  are  used  but  only  for  constructing  sensor  outputs. 

o state  estimation 

FINDS supplies  the  vehicle  state  estimates  used  by  the  guidance  and  flight 

control  algorithms.  That  is  to  say,  the  no-fail  filter  in  our  application would have 

been  there  even i f  there  were  no  sensor  fault  monitoring  system.  Consequently,  the 

no-fail  filter  should  not  be  considered  an  additional  requirement.  Therefore,  in 

comparing  the  complexity of  FINDS with other  FDI applications,  only  the  bank of first- 

order  detectors  in FINDS should  be  .considered.  For  instance,  the  complexity of the 

bank of first-order  detectors  are  roughly  equivalent  to  the  bank of filters  in  the F-8 

FDI study. 

o normal operating errors 

In FINDS, important  normal  operating  sensor  biases  are  estimated  in  order  to 

remove their  false  alarm  effects.  Sensor  failures  are modelled as  bias  jumps with 

infinite  uncertainty  whereas a sensor  normal  operating  error  is  modeled  by a constant 

random  variable  with a finite  uncertainty  (as  defined  by  the  sensor  specifications). 

Hence,  the  no-fail  filter  attempts  to  distinguish  between a normal  operating  sensor 

bias  and a bias  jump  failure  in  that  sensor. On the  other  hand,  in F-8 FDI. normal 

operating  sensor  biases  are  considered  only  in  the  selection of decision  thresholds. 
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In the  RSDIMU work,  the  sensor  operating  errors  (biases  as well as  scale  factors  and 

misalignment)  are  used  in  the  selection of thresholds. 

o information  pattern 

Finally, FINDS looks at  all  sensor  outputs  simultaneously in deciding a sensor 

fault ,   in  contrast   to  other FDI studies in which  only those  sensors  explicitly  related  to 

a specific  sensor  are  used  in  deciding  whether  that  sensor is at   fault  or not.  For 

instance,  in F-8 FDI study, a roll  attitude  sensor  failure  is  decided by  considering 

only  the  roll  rate,  pitch,  and yaw att i tude  sensors while ignoring  the  analytic 

redundancy from the  other   sensors .  On the  other  hand, FINDS looks a t  all of the   ra te  

a t t i tude  sensors   as  well as   o ther  dynamically  coupled  sensors  in  deciding a roll 

attitude  sensor  failure.  Hence, FDI information  contained  in  the  dynamic  redundancy 

of all  sensor  outputs  are  simultaneously  used in FINDS. Of the  other  studies,  only the  

detection  and  estimation  algorithm of the multiple  hypothesis  testing  approach would 

be  more  optimal  (least  mean  square  sense)  than  that  employed  in FINDS, but only a t  

the  expense of a severe  computational  burden. 

The organization of the  report  is as follows. The developed  fault  tolerant  system 

methodology  is  described in Chapter 11. A tutorial  description of each major  block of 

the  FTS is  given  in  Section 2.1. Analytic  description of the  developed FTS is contained 

in Sections 2.2-2.6. This chapter  ends with  Section 2.7 where  an  illustrative  example 

is given  showing the  exploited  failure  signature in the  design.  Chapter I11 examines 

the  simulated  performance of the  developed FTS. Conclusions are  presented  in 

Chapter IV. 





2. FAULT TOLERANT SYSTEM 

In this   chapter   the  analyt ical   s t ructure  of the  developed  aircraft   sensor  fault  

tolerant  navigation  system will be  discussed  in  detail. 

The  objective of the  fault   tolerant  system  is  t o  provide  reliable  aircraft  state 

estimates t o  an  automated  guidance  and  control  system  which  accomplishes  automatic 

landing  in  an MLS environment. The  developed  fault  tolerant  system  can  detect 

failures  in  navigation-aid  instruments  (e.g.  on-board  navaid  receiver  as well a s  

ground-based  navaid  antenna  failures),   on-board  inertial ,   and  f l ight  control  sensors.  

Since  the  developed FTS uses  the  analytic  redundancy  between  various  sensor  outputs 

arising  from  aircraft  equations of motion,  sensor  failures  can  be  detected  even if 

there   is  only  one  sensor of a given  type  in  the  configuration. We envision  the 

practical   use of our  developed FTS in  a  tr iple  or  dual  redundant  (or  combinations 

thereof)  sensor  configuration. For instance,   our  FTS would  improve  the  fail-op/fail- 

safe  capability of a  triple  redundant  voting  system t o  at  least  a  fail-op/fail-op/fail- 

safe  capability. 

Basically,  the  fault  tolerant  system  consists of a  navigation  filter  conditioned on 

the  assumption of no  failures,  followed by a  bank of low-order  failure  detectors  and 

their  companion  decision  and  reconfiguration  logic. The estimation,  detection,  decision 

and  reconfiguration  algorithms  are  derived by using  nonlinear  aircraft  point  mass 

equations of motion. 

Although  simpler  linear  filtering  algorithms  could  have  been  used,  the  nonlinear 
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filtering  algorithms  used  in  our FTS have  the  advantage of being  independent of 

landing  path  and  selected  trim  conditions. In contrast,  linear  filtering  algorithms2 

would necessitate  the  scheduling of gains. 

The outline of Chapter I1 is as follows. An overall  description of the  fault- 

tolerant  system is given in  Section  2.1  by  going  over  the  operation of each major 

block. The aircraft  point  mass  equations of motion and  sensor  dynamics,  on which the 

filter-detector  development is based, is then  discussed  in  Section  2.2.  Section  2.2 

also  outlines  the  operation of the  no-fail  filter.  Failure  detector  implementation is 

discussed  in  Section  2.3,  and  in  Section  2.4,  the employed  decision  rule is explained. 

Tests  for  multiple  simultaneous  failures  are  discussed  in  Section  2.6. The next 

section,  2.5,  describes  the  operation of healing  tests. In Section  2.6,  the 

reinitialization  procedure is outlined. An example,  designed t o  highlight  the  various 

failure  signature  information  contained  in  the  no-fail  filter  residuals, is given  in 

Section  2.9. 

2.1 Fault  Tolerant  System Overview 

The  design  problem  in  our  application  can  be  broadly  stated as follows: Given 

redundant  discrete-time  measurements of various  navigation-aid  and  on-board  flight 

control  and  inertial  sensor  measurements  on  an  aircraft,  generate  estimates  for  the 

vehicle  states  required by the  automatic  guidance  and  control laws  in the  possible 

presence of failures  in  these  sensors. The desired FTS qualities  dictated by our 

'Except,  of  course, i f  a constant   ga in   l inear   navigo 
sa t is fac tory   es t imat ion   per formance .  

t i o n   f i l t e r   c o u l d  be des igned  with 
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appl icat ion  are   the following: 

use  inherent  analytic  redundancy  arising  from  a  knowledge of the   a i rc raf t  
dynamics so that   hardware  redundancy  requirements   are   reduced  for   a   given 
mission  reliability 

fast detection of hard  failures,   and  detection of mid- and  soft-level  failures 
before  their  effects  on  system  performance  become  significant 

ability  to  handle  different  types of failures  (i.e.  hardover,  null,  increased 
inaccuracy,  ramp,  etc.  

acceptable  false  alarm/detection  probabili ty  performance in the  presence of 
colored  measurement  noises  (since MLS sensor  noises  are  t ime-correlated in 
our  application  and  induce  an  unacceptably  high  false  alarm  rate if they   a re  
not  compensated) 

distinguish  between  normal  operating  sensor  errors,   such  as  biases,   and 
sensor  failures  ( this  issue  is   especially  cri t ical   since  most  analytic FTS 
techniques model failures  as  bias  jumps  in  sensor  outputs) 

ability  to  recover  from  false  alarms  which  occur  during  aircraft  maneuvers 
due t o  misalignment  and  scale  factor  errors  in  body-mounted  instruments 

feasible  computational  complexity  enabling  future  on-board  real-time 
implementation  with  appropriate  modifications. 

With these  goals  in  mind,  the  aircraft  sensor  fault  detection  design  problem w a s  

formulated  in  the  context of simultaneous  state  estimation  and  failure  detection  in 

nonlinear  discrete  time  stochastic  systems.  Figure 1 displays  the  major  components of 

the   resu l t ing   f i l t e r -de tec tor   s t ruc ture .  The  major pa r t s  of this  system  are  as follows: 

o a  nonlinear  no-fail  filter  which  estimates  aircraft  states  and  sensor  biases 
assuming  no  sensor  failures 

o a  bank of first-order  detectors  which  estimate  hypothesized  sensor  failure 
levels  using  the  residuals of the  no-fail  filter  as  inputs 

o likelihood  ratio  computers,  driven  by  the  detector  outputs,  which  perform 
the  necessary  computations  for  the  multiple  failure  hypotheses 

o a decision  rule  which  selects  the  most  likely  failure  mode  based on the  
likelihood  ratios 
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REPLICATED  AIRCRAFT SENSOR MEASUREMENTS 
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o a reconfiguration module  which performs  the  various  reinitialization 
procedures  after  the  detection of a failure 

o a healing test module  which  monitors t he  failed  sensors  to  check  their 
possible  recovery. 

The fault  tolerant  system  is  concerned  with  failures  in  the  sensor  configuration 

consisting of: 

o body  mounted  accelerometers (A,,Ay,A,) 

o body  mounted  rate  gyros  (P,Q,R) 

o microwave  landing  system (MLS) 

o indicated  airspeed (IAS) 

o IMU att i tudes from a stabilized  platform (+,e,+) 

o radar  altimeter (RA) 

The three  body  mounted  accelerometers  and  rate  gyros  above  are  flight  control 

quality  sensors,  each of which is aligned  along  one of t he  body  frame  axes. An 

alternative  sensor  complement,  containing a prototype  dual-fail  operational  Redundant 

Strapped-Down  Inertial  Measurement Unit (RSDIMU), is  also  considered. In this  sensor 

configuration,  body  mounted  accelerometers  and  angular  rate  gyros  are  replaced  by 

the  navigation  quality  acceleration  and  rate  measurements from the  RSDIMU while the 

RSDIMU attitude  outputs  replace  the IMU Euler  angle  measurements. 

The navigation  aid is a ground-based Microwave Landing  System (MLS) which 

transmits  position  information  to  aircraft  within its volumetric  coverage  at  discrete 

time intervals. The MLS (see  Figure 2) consists of a Distance  Measuring  Equipment 

(DME) providing  aircraft  range  information,  an  azimuth  antenna  co-located  with  the 
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DME provides  the  aircraft 's   angle  relative  to  the  runway,  and  an  elevation  antenna, 

located  near   the  gl ide  path  intercept   point   provides   the  a i rcraf t   wi th  its clevation 

angle  relative  to  the  local  horizon. 

The radar  al t imeter  replaces  the MLS elevation  measurement  when  the  aircraft is 

over  the  runway  during  which  the  elevation  measurements  are  normally  invalid. In the  

next  six  subsections,  we will describe  each  major  block of the  fault  tolerant  system. 

2.1.1 No-Fail Filter 

The  no-fail  filter  shown  in  Figure 1 is an  extended Kalman Filter (EKF') [15] 

which is designed  on  the  assumption of no  failures.  Although we have  used  an EKF in 

our  study,  any  other  nonlinear  filter  could  have  been  used  without  significantly 

affecting  the  failure  detection  algorithms. We have  chosen  a  nonlinear  filtering 

formulation  in  order  to  have  a  f l ight  path  independent  estimator.  The EKF 

development  is  based  on  a  discrete-time  difference  equation  for  the  aircraft  point 

mass equations of motion  mechanized  in  a  ground-based,  flat  earth  Cartesian 

coordinate  system  with its origin  located on the  runway  (Figure 3). This  nonlinear, 

stochastic  difference  equation is obtained by  transforming  the  specific  force  measured 

by the  body  mounted  accelerometers  into  the  runway  frame,  and  integrating this 

expression  along  with  the  differential  equations  for  the  Euler  angles  over a fixed 

sampling  interval. 

The  no-fail  filter  provides  estimates  for  the  aircraft  states, %(k), which  consist 

of aircraft  position,  velocity,  attitude,  and  horizontal  winds,  and  estimates  for  the 

"normal  operating"  biases, 6(k), associated  with a specified  subset of the  sensors .  
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State  estimates  provided  by  the  no-fail  filter  are  used  by an automated  guidance  and 

control  system  to  land  the  aircraft  along a prescribed  path [4]-[5],[16]-[17). 

The no-fail  filter  functions  essentially  as a navigator in this  system,  estimating 

the   s t a t e  of the  aircraft  and  the  "normal  operating"  biases  on  selected  sensors. 

However,  unlike  most  navigators,  this  one  continuously  filters  the  navigation  aid, IAS, 

and  attitude  measurements, so as  to  constantly  correct  the  propagated  state 

estimates. In addition,  since  the  no-fail  filter is based  on  the  nonlinear  aircraft 

equations of motion, it  is  independent of flight path  and trim  conditions  and  does  not 

require  any  gain  scheduling. 

According  to  the  manner  processed by the  no-fail  filter,  the  replicated  sensor 

set  is  divided  into two groups:  1)  no-fail  filter  input  sensors,  u(k),  consisting of body 

acceleration  and  angular  rate  measurements; 2) no-fail  filter  measurement  sensors, 

y(k),  formed by  the MLS, IAS ,  IMU, and RA outputs. The input  sensor  outputs  are 

integrated  in  the  no-fail  filter,  without  any  closed-loop  filtering,  after  they  are 

compensated by the  "normal-operating"  bias  estimates. Only one  set of the  replicated 

input  sensors,  u(k),  and  the  average of the  replicated  measurement  sensors,  y(k),  are 

used by the  no-fail  filter  after  being  processed in the  "selection logic" and  "summer 

logic"  blocks.  Replicated  input  measurements  are  kept as standby  equipment.  Thus, 

the  filter  size  is  kept  to a  minimum without a loss of generality. 

- 

We have employed a  new separated EKF algorithm  for  the  implementation of the  

no-fail  filter [6]-[7].  The separated EKF algorithm  provides a numerical  decomposition 

procedure  for  obtaining  the EKF filter  gains. A t  each sampling instant, this algorithm 
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sequentially  computes: 1) a  bias-free  gain; 2) a  bias  correction  matrix; 3) a bias 

gain;  and 4) a correction  to  the  bias-free  gain.   The  separated EKF also  improves 

numerical  accuracy  since  lower  order  matrices  are  used  in  the  numerical 

decomposition,  and  finite  variance  for  the  plant  state  initial  conditions,  and  infinite 

uncertainty  in  the  a  priori   bias  estimates  are  easily  handled. 

2.1.2 Detectors 

Since  the  no-fail  filter  computes  the  residuals  for  the  averaged  measurement 

sensor   outputs ,   3k) ,   the   res idual   sequences  for   the  individual   measurement   sensors ,  

y(k),  need  to  be  computed.  This  is  accomplished  in  the  "residuals  computation"  block 

by using  the  no-fail  filter 's  estimate,  F(k), f o r  the  measurement  sensor  outputs.  The 

output  of this  block  is  the  output  measurement  residual  sequence,  ro(k),  which is the  

difference  between  the  measurement  sensor  outputs  and  their   corresponding  predicted 

estimates  provided by the  no-fail  filter.  This  residual  sequence is the  same  one  that  

would  have  been  generated  by  an EKF formulated  to  use  the  unaveraged  measurements, 

When the  measurement  noises  are  zero  mean,  white,  and  Gaussian,  then  the 

residual  sequence,  ro(k),  of the  no-fail  filter -- in  the  absence of input or output 

sensor  failures -- is approximately  (exactly,  in  the  linear  case) a zero  mean,  white 

Gaussian  sequence of random  vectors. The no-fail  filter w a s  designed by  making the  

above  assumptions  for  the  measurement  noises.  However,  the MLS noise  in  our 

application is time correlated,   ra ther   than  white .  This necessitated  the  post-fi l tering 

of t h e  MLS residuals  to  remove  these  correlations.  This was  accomplished  by  passing 

each MLS residual  sequence  through  a first order  f i l ter   also  located  in  the  "residuals 
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computation"  block.  The  measurement  residuals  are  then  used by the  bank of 

detectors.  

The bank of detectors,  which  follow the  residuals  computation  block,  are a se t  of 

first order  filters,  each  estimating  the  level of an  hypothesized  sensor  failure. In the  

case of single  sensor  failures,  the  total  number of detectors  is  equal  to  the sum of 

the  number of input  sensors  and  the  number of measurement  (replicated  ones 

included)  sensors. For instance,  with  dual  sensor  redundancy,  there would be  twenty 

of these  f irst   order  detectors:   three  for  the body  mounted  accelerometers,  three  for 

the body  mounted rate  gyros, six for  the MLS range,  azimuth  and  elevation 

measurements, two for  the IAS outputs,  and  six  for  the IMU measurements. 

Using the no-fail  filter  residuals  as  measurements,  each  detector  estimates  the 

failure level  associated with that  sensor.  Failures  are modelled as  bias  jumps in the  

measurement  equations.  Failure  bias  jumps  are  assumed  to  be  zero  mean  random 

variables  with  infinite  covariance  (equivalently  zero  information). In the  linear  case, 

bias  type  sensor  failures  manifest  themselves in an  additive  fashion  onto  the  no-fail 

filter  residuals. For the  nonlinear  problem  considered,  similar  relations  have  been 

derived  by  making  suitable  approximations. 

Each  detector  puts  out a compensated  residual  sequence,  {r,(k),r2(k) ,..., rM(k)i, 

such  that   the  effects of the  hypothesized  sensor  failure  are  removed from the  no-fail 

filter  residuals by processing  the  estimated  sensor  failure  level.  Detectors  operate 

over a "window" of the  residuals,  with the  initial  failure  level  estimates  and 

uncertainties  reset  at  the  beginning of each  residual window. Each  detector  estimates 
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the  level of a bias  jump in the  associated  sensor  output  which is hypothesized  to 

occur   a t   the   beginning of the  corresponding window.  The s t a r t  of a new window 

determines  the  hypothesized  time of failure,   and  the maximum length of t h e  window 

determines  the  time  to  wait  before  initiating  a new hypothesis. 

Figure 4 shows  the  synchronization of these  various  residual windows for a 

typical  run. In this   run,   the   decis ion window length is 1 second.  Estimation window 

lengths  for  input  and  measurement  sensors  are 3 and 1 seconds,  respectively. The 

length of the   hea le r  window is 3 seconds. A t  6.4  seconds,  due  to  a  sensor  failure 

detection  decision,  all of the  residual windows are  restarted.  Estimation  and  healing 

(discussed in 2.1.6)  residual window lengths  are  constrained  to  be  integer  multiples of 

the  decision  residual window length. 

The  choice of residual window lengths  is   based  on  the  sensor  type,   the  expected 

failure  level  (hard, mid, soft),  the  specified  probability of false  alarm,  and  the  desired 

detection  speed.  Since  the  detectors  keep  track of how each  hypothesized  sensor 

failure  propagates  through  the  no-fail  filter  dynamics  to  affect  the  no-fail  filter 

residuals,   the  sensor  type  definitely  plays  an  important  role  in  the  determination of 

residual window lengths.   For  instance,  we have  chosen  the  residual window length  for 

input  sensors  to  be  three  t imes  the  length  for  measurement  sensors in our 

application.  Finally,  the  residual  windows  should  be  large  enough  to  produce  a 

tolerable  probability of false  alarm  rate  and  small  enough  to  permit  rapid  detection of 

sensor  failures.  

In summary,  the  detector  block  consists of a  bank of first order  estimators 
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driven  by  the  expanded  innovations of the  no-fail  filter.  Each  detector  corresponds 

to  a different  sensor  failure  hypothesis,  and,  corresponding  to  each  detector,  there is 

an  associated  residual  data window length. The bias  jump  magnitude  for a given 

sensor  failure,  hypothesized  to  happen  at  the  start of the  residual window, is 

estimated b y  the  detector  corresponding  to  that  sensor. The residuals of the 

detectors  along  with  the  residual of the  no-fail  filter  are  used  in  the  likelihood  ratio 

(LR) computations which are  discussed  in  the  next  section. 

2.1.3 Likelihood  Ratio  Computations 

As seen  in  Figure 1, each  Compensated  residual  sequence, ri(k),  is used  in  the 

computation of the likelihood  ratio,  Ai(k), for hypothesis H i  corresponding  to  the  i ' th 

sensor  failure. Likelihood ratio  computations  are  also  based  on a fixed window of the 

residuals. The length of this  residual window for  the LR computations  is  the  same  for 

every  hypothesis. However, the  length of this  decision  residual window is, in  general, 

different from tha t  of the  detector  estimation  residual windows described  in  the 

previous  section. The likelihood  ratio,  for a particular  hypothesis, H i ,  is proportional 

to   the  a posteriori  probability  (conditioned  on  the  residuals  in  the  decision window) 

that  the  compensated  residuals model (used by the  LR) corresponds  to  the  "best" 

hypothesis. 

Each  likelihood  ratio  is  initialized  with  the a priori  probability P,,, of that  

hypothesis. A priori  probabilities  are  determined from  known sensor  failure  rates  and 

modified according  to  the  expected  estimation  degradation  due t o  modelling errors .  

Each  likelihood  ratio  is a function of a sum of residual  quadratic  forms  weighted by 

the  residuals '   statist ics.  Likelihood ratios  are  used by the  decision  rule which is 
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discussed next. 

2.1.4 Decision Rule 

The decision  rule  selects  the most likely sensor  failure  based  on  an M-ary 

hypothesis  testing  procedure. This test  minimizes the  Bayes  risk  which is a weighted 

average of making incorrect  decisions.  These  weightings  are  shown  as  the  input 

"costs" in  Figure 1. If it  is  assumed  that  costs  associated with  making incorrect 

decisions  (selecting  hypothesis H i  when H .  is true)  are  all  equal  and  those of making 

correct  decisions  (selecting  hypothesis H i  when H i  i s   t rue)   a re  all  zero,  then  the M- 

ary  decision  rule is equivalent  to  choosing  hypothesis H i  corresponding  to  the  largest 

a posteriori  probability. The decision  logic  provides  the  output of the M-ary 

hypothesis  test  indicating  whether  the  no-fail  filter  is  operating  under no failures 

(hypothesis Ho), or under  the  i ' th  sensor  bias jump failure ( H i ) .  

J 

2.1.5 Reconfiguration Logic 

Once a failure  decision is reached,  the  necessary  filter/detector  changes  are 

made  in the  reconfiguration  block. For input  sensor  failures,  this  process  includes 

removing the  faulty  sensor from the no-fail  filter  inputs  and  replacing  it  with a 

redundant  one of the same  type. I f  there   are  no more healthy  sensors of that  type 

left  in  the  stand-by  queue,  then  the  no-fail  filter is restructured  to  reflect  the  loss 

of that  sensor  type  input,  provided  that  the  filter  is  capable of operating  without  it. 

Similarly, if a measurement  sensor  fails,  then  the  faulty  sensor is removed  from the 

corresponding  average  and  the  appropriate  changes  in  the  no-fail  filter  statistics  are 

made. Again, when  no  sensor of a given  type  remains,  then  the  no-fail  filter 

s t ruc ture  is collapsed  to  accommodate  the  loss of that  type  sensor  measurement. 
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The  next  function of the  reconfiguration  block  is  to  reinitialize  the  no-fail  filter, 

detectors,   and  the  l ikelihood  ratio  computers following the  identification of a  failure. 

The  reinitialization of the  no-fail  filter is necessary  since  undetected  sensor  failures 

propagate  through  the  no-fail   f i l ter   dynamics  to  corrupt  the  state  and  bias  estimates.  

The  reinitialization of the  no-fail  filter  is  performed  by  increasing  the  estimation 

error   covariance by an  amount  reflecting  the  effect of uncertainty  caused by the  

identified  failure.  This  incremental  covariance is a  function of the  sensor   type,   the  

sensor  failure  level  estimate,  and  the  elapsed  time  since  the  hypothesized  failure  onset 

time. 

For instance,  if a  body  mounted  normal  accelerometer  failure  is  detected,  then 

the  incremental   covariance would  principally  involve  terms  related  to  altitude  and 

normal  velocity. The estimates of the  no-fail  filter  are  not  reinitialized  directly  in 

order   to  minimize t ransients .  The state  estimates  gradually  eliminate  the  effects of 

the  sensor   fa i lure   due t o  the  increased  estimation  error  covariance.  The  initialization 

of detectors  and  likelihood  ratio  computers  after  a  sensor  failure is identical   to  the 

procedure  for   s tar t ing  a  new detector  and  estimation  residual  window. 

2.1.6 Healing Tests 

In order  t o  recover  from  false  alarms  associated  with  modelling  errors  (e.g.  scale 

factor  errors  during  significant  maneuvers),   tests  for  healing of a  failed  sensor  are 

performed  after  the  detection  and  isolation of a  ' fai lure.   Input  sensors  are  tested  for 

healing  by  comparing  their  outputs  with  a  sensor of the  same  type  currently  used  by 

the  no-fail   f i l ter .  This t e s t  is a  binary  hypothesis  test   conditioned  on  the  decision 

rule  outcome  that   the  sensor  used  by  the  no-fail   f i l ter  is healthy.  The  recovery of a 
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failed  measurement  sensor  is  tested by comparing  its  output with the  estimate of tha t  

sensor  output  provided  by  the  no-fail  filter. Again, this  test  is a binary  hypothesis 

test  conditioned  on  the  decision  rule  outcome  that  all  sensors  currently  used by the  

no-fail  filter are  healthy. Both input  and  measurement  sensor  tests  are  performed 

only at   the   end of a healing test window, which is constrained  to be an integer 

multiple of the  decision  residual window length  as shown  in  Figure 4. 

2.2 No-Fail Filter 

In this  section, we  will present  the  no-fail  filter  algorithm  along with the 

underlying  aircraft  dynamics which the  filter  design is based  on. Our discussion 

begins  in  subsection 2.2.1 with a derivation of the  aircraft  equations of motion and 

the  analytic  relationships  relating  the  no-fail  filter  sensor  outputs  to  the  aircraft 

dynamics.  Subsection 2.2.2 contains  the implemented  filtering  algorithm. 

2.2.1 Aircraft  Dynamics 

The function of the no-fail  filter  is  to  provide  estimates  for  the  aircraft's 

position,  velocity  and  attitude with respect  to a ground  frame  located  on  the  runway. 

As dictated by our application,  the  no-fail  filter  also  provides  normal  operating  blas 

estimates for a selected  sensor  subset  and  estimates  for  horizontal  winds.  Clearly,  the 

degree of analytic  redundancy which can  be  exploited by the  FTS is  dependent  on  the 

choice of underlying  system  dynamics  for  the  no-fail  filter  design. In our  study, we 

have  chosen  the  aircraft  point mass equations of motion  for  the  system  dynamics  and 

a simple  "signal  plus  bias-plus  noise" model for  the  sensor  measurements. 

The  following frames of reference  (definitions  can  be  found  in [9]) will be  used  in 
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our discussion: 

I frame: 

E frame: 

L frame: 

earth  centered  nonrotating  ( inertial)   frame 

earth  f ixed  (rotating)  frame 

local  level  North,  East, Down (N,E,D) frame  located  at  A/C center  of 
gravity 

B frame:  body  frame 

G frame:  a  geographic  frame  located  at  the  start of the  a i rport   runway 

Our goal  is first to  describe  aircraft   motion with respect  to  the  G-frame while 

allowing for   the  ear th 's   rotat ion  and  assuming a  locally  flat  earth  in  the  vicinity of 

the  terminal  area.   Secondly,  we will re la te   the  sensor   measurements   to   these 

equations of motion.  The  vector  equation  for  the  aircraft  acceleration  with  respect  to 

t he  G-frame  which is itself  rotating  with  respect  to  the  inertial  frame is given  by 

[9]-[lo]:  (referring t o  Figure 3 for  frame  geometry) 

. .  
rG = TGLCTLB f B  + gLI - 2 n G i G  (2.2.1) 

where  capital   subscripts  denote  coordinatization  ( i .e.  rG in  the r vector  coordinatized 

in  the  G-frame). TGL and TLB are  the  transformation  matrices  from  the  L-frame  into 

G-frame  and  from  the  B-frame  into  L-frame  respectively.  The  vector fg  is the   t rue  

specific  force  which  would  be  measured  by  an  ideal  accelerometer  in  the  body  frame: 

f B  = Ter ( 'P I  - gI) (2.2.2) 

where g I  is the  gravi ta t ional   accelerat ion  a t   the   instrument   locat ion  expressed  in   the 

inertial   frame, g L  is  the  gravity  field  vector  representing  the  acceleration  from  the 
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combined  effects of earth’s  gravitational  field  and  the  centripetal  acceleration  defined 

by 

gL = g - TLGQ$@G (2.2.3) 

where pG is  the  position  vector from the  center of ear th   to  A/C center  of gravity 

coordinatized  in  the G-frame. The rotation  matrix fl, is the  skew  symmetric  form  of 

the  angular  rate  vector wG defined  by 

wG = TGI [wE,O,O]’ 

where uE is   the  earth’s  rotation  rate (7.27 x rad/sec). 

(2.2.4) 

Modelling the  accelerometer  measurement  inaccuracies by a ”noise  plus  bias” 

type model, we have  for  the  accelerometer  measurement  output  ua 

u, = T B I ( ‘ r I  - gI) + b, + no (2.2.5) 

where b, is the  accelerometer  bias  vector  in  the  body  frame  and n, is  the 

accelerometer  noise  vector.  Substituting  the  expression for the  accelerometer 

measurements  (eq. (2.2.5)) into  equation (2.2.1) for fa.  we get 

(2.2.6) 

Equation 2.2.6 above  represents  the  equations of motion relating  to  the 

accelerometer  measurements. The transformation  matrices  are given in Appendix A. 

The equations  relating  the  rate gyro measurements  to  the  Euler  angles  are 

obtained from [lo]: 

e = rw[wB - TB,TLGwGl (2.2.7) 
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where e is the  vehicle  Euler  angles  defind  by e’=[$,0,+], wB is the  true  absolute  vehicle 

rates  vector  in  the  body  frame which  would be  measured  by  an  ideal  rate  gyro  triad, 

and I?, is the  nonorthogonal  transformation  matrix  relating  the  body  rates  to  the 

Euler  angle  rates. Assuming a “bias  plus  noise” model for  the  rate  gyros  defined by 

u, = w + b, + n, where b, is the   ra te  gyro bias  and n, is  the  associated  noise 

vector,  we get  the following kinematics  relationship: 

e = rw[uw - TBGwG - b, + n,] (2.2.8) 

We have  used  the following  model for  the  horizontal  winds 

w = Aww + nw  (2.2.9) 

where w’ = [wx,w 1’ with wx and w are  the  horizontal  wind components, nw is a white 

Gaussian  process  noise with covariance Q,. Defining the  vehicle  state x’ = [ r b r b e ’ , ~ ‘ ]  

and  combining  eqs.  2.2.1-9 we obtain  the following state  space  description of the  A/C 

point  mass  equations of motion. 

Y Y 

x(t) = A,x(t) + B,[u(t)-bu] + B:u: + E,n(t) 

where u ’  = [ub,u;J],  b’, = [bb,b;J], n‘ = [n; ,n;J,n~] and 

A, = 

0 0  

T~~ O 

O rw 

0 0  
I 

(2.2.10) 

( 2 . 2 . 1 1 )  
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, E, = 

Integrating  this  expression  over  a  sampling  interval of T seconds [ll], the  

following  nonlinear  discrete-time  stochastic  difference  equation  describing  the  aircraft 

dynamics is obtained: 

x(k+l)=Ax(k) + B(x(k))[u(k)-b,(k)] + u9 + n(k)  (2.2.12) 

where  the  six  dimensional  vectors  u  and b, are  composed of accelerometer  and  rate 

gyro  measurements,  and  their  associated  biases,  respectively. The vector u 
9 

represents  the  incremental   effect  of the  ear th’s   constant   gravi ta t ional   force  on  the 

system  state.  The  matrices A and B are  defined by 

A 

T I  

I 

0 

0 

0 

0 0 

(2 .2.13)  

A, is the  2x2  system matrix associated  with  the wind  dynamics.  The  3x3  matrix 

TGB is the  transformation  from  the  body  axes  into  the G frame [lo], and rW is   the   3x3 

matrix  relating  the  body  rates  to  the  Euler  angles [ lo] defined  in  appendix A. 
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The  variance, Q, of t he  white  noise, n(k), is given by  

O =  r2/2TGBoaT6B  TTGBoaTbB 0 0 

0 0 Truowr; 0 

0 - 0 

(2.2.14) 

where Q, and Q, are  the  measurement  noise  variances  for  the  accelerometers  and  rate 

gyros,  and Qw is the  process  noise  variance  associated with the  wind dynamics. 

Note that  the  state  transit ion  matrix,  A, is   constant.  However, both  the  process 

noise  variance,  Q(k),  and  the  system  input  matrix, B, are  state  dependent  due  to  the 

nonlinear  state  dependent  transformation TGB and r,. Now let  us consider  the 

measurement  equations  for  the  system  described  by  eqs. (2.2.1)-(2.2.14). Let (xM,yM,zM) 

and  (xE,yE,zE)  be  the  azimuth  and  elevation  antenna  locations  in  the  runway  frame, 

and (rx,r ,r ) be  the A/C position  relative  to  the  runway  expressed  in  the  runway 

frame.  Then,  the MLS azimuth  (yaz),  elevation  (ye,),  and  range (yrn) measurements  are 

defined  by: 

Y Z  

ya,=~in-l [ ( -~y+yu)/razl  + bo, + vaZ (2.2.15) 

Ye,=sin-l[(-rz+z~)/r=,]  + bel + V e l  (2.2.16) 

Y r n  = r,z + b r n  + V r n  (2.2.17) 

where  (baz,be,  ,brn)  and  (voz,ve,  ,vrn)  are  biases  and  measurement  noises  associated with 

the MLS and raz,   rel  are  the  aircraft   range from the  azimuth  and  elevation  antennas 
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given  by: 

(2.2.18) 

(2.2.19) 

Assuming a zero  angle of at tack,  the  airspeed  indicator  output,  y,;, is a noisy 

version of the  aircraft  velocity  with  respect  to  the  atmosphere  given by: 

Y,, = J(~,-w,)~ + (i Y Y  “w )’ + iz2 + b SP +vsp (2.2.20) 

where (wx,w ) are  the  horizontal wind components  and b,, and v a re   the  IAS normal 

operating  bias  and  white  measurement  noise. If the  angle of attack  measurement is 

available,  then  eq. (2.2.20) would be  appropriately modified. 

Y SP 

The IMU platform  provides the  Euler  angle  outputs. 

and yaw (y+) angle  measurements  are modelled  via 

Y+ = + + bb + V+ 

ye = 8 + be + Ve 

Y+ = + b+ + V+ 

These  roll  (y+).  pitch (ye), 

(2.2.21) 

(2.2.22) 

(2.2.23) 

where  (b+,be,b+)  and (V+,Vg,V$) are  the  biases  and white  measurement  noises  associated 

with  platform  outputs. Defining the  measurement  vector, y’=[y,,,y,, ,y,,,y,,,y+,y~,y+], 

t he  system  dynamics  output  becomes 

y(k+ 1) = h(x(k+l)) + by + v(k+ 1) ’ (2.2.24) 

where  by is the  measurement  sensor  bias  vector  defined by 

b; = [b, , ,b, , ,b, , ,bSp,b+,bg,b~] and v is the  measurement  noise  vector  defined  by 
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v’ = [v , , , vaz ,v~ ,   , v sp ,v~ ,v~ ,v~] .  The nonlinear  measurement  function  h(x)  is  defined  by Y 

eqs. (2.2.15)-(2.2.24). In the  next  section,  the  no-fail  filter which estimates  the  state 

variables  and  the  normal  operating  biases of the  stochastic  nonlinear  dynamic  system 

described  above will be  discussed. 

2.2.2 No-Fail Filter 

In this  section, we will describe  the  operation of the  no-fail  filter  in  detail. The 

no-fail  filter is an  extended Kalman filter  estimating  the  aircraft  runway  position  and 

velocity  attitude  and  horizontal winds along  with the  normal  operating  biases of i t s  

inputs  and  measurements. The estimator  uses  either RSDIMU body outputs,  or a set  of 

body  mounted  accelerometer  and  rate  gyro  measurements  as  its  inputs  as  discussed  in 

the overview  section. In the  case of replicated  inputs,  redundant  accelerometer  and 

rate  gyro  sensors  are  kept  as  standby  equipment. 

MLS range,  azimuth,  and  elevation  sensors,  and  the IAS provide  the  measurements 

into  the  filter. If desired, IMU platform  outputs, or RSDIMU computed  attitudes,  can 

also  be  included  in  the  measurement  set. For the  case of hardware  redundant 

measurements,  the  no-fail  filter  uses  an  average of the  replicated  sensor  outputs  as 

its  measurement. In this way, filter  size  is  kept  to a  minimum, without  loss of 

generality. The no-fail  filter  also  estimates  the  normal  operating  biases of any 

specified  subset of the  sensor  complement. 

In the  process of obtaining  the EKF used  in  our  study, we have  extended  the 

separate  bias  estimation  algorithms  for  linear  systems  to  nonlinear  systems  via  the 

extended Kalman filter  framework. A s  discussed  in  the overview section,  our  extension 
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yields a ‘numerical  decomposition  procedure  for  obtaining  the  extended Kalman filter 

gains. We will not  discuss  the  the  details of this  procedure  since  they  were 

adequately  covered in the  Interim  Report [l] and  associated  papers [6]-[7]. Here, we 

will present  the  computational  structure of the  EKF algorithm for the  system  dynamics 

described by eqs.  (2.2.12)-(2.2.24). 

The  following assumptions  are made in obtaining  the EKF algorithm. The system 

state  and  bias  initial  conditions  are  assumed  to  be  zero mean  Gaussian  random 

variables with variances P x ( 0 )  and Pb(0), respectively. In addition,  it  is  assumed  that 

the  measurement  noise  {v(k),k=1,2 ,...[ is a zero  mean,  white  Gaussian  sequence  with 

constant  variance R. Furthermore,  the  plant  state  and  bias  initial  conditions, 

measurement  and  process  noise  sequences  are  all  assumed  to  be  mutually 

uncorrelated. 

In [l], [6]-[?I, it is  shown  that  the EKF equations  for  the  nonlinear  system 

dynamics  described  by  eqs.  (2.2.12)-(2.2.24) will be  given by (dropping  the  functional 

dependence of variables  and  forming a composite  bias  vector b as  b=[b;,b’]’ 
Y 

? (k+ l )  = AZ(k) + B(?(k))ii(k) + u9 + Kx(k+ l ) r (k+ 1) (2.2.25) 

6 (k+ l )  = 6(k) + Kb(k+l)r(k+l)  (2.2.26) 

where  the  innovations  sequence of the  no-fail  filter,  r(k+l).  is  given  by: 

r ( k + l )  = y(k+l)  - h(z(k+l/k)) - D6(k)  (2.2.27) 

and  the  bias  compensated  input  vector, b(k), is given  by: 

G(k) = u(k) - Bb6(k) (2.2.28) 
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Note t h a t  D6(k) = Ey(k) and Bb6(k) = 6,(k); therefore,   these  matrices  are  defined  as 

D = [0 I]. B, = [I 01 if al l   input  and  output  biases  are  estimated. The filter  gain 

par t i t ion,  K,, is  defined  by: 

K,(k+l) = K,(k+l) + V(k+l)Kb(k+l)  (2.2.29) 

where KO is  the  "bias-free"  filter  given, V is   the  bias  correction  matrix  and K, is the  

bias  filter  gain. Ko(k+ 1) .  V(k+l)  and Kb(k+  1) are  computed  sequentially  using  the 

l inearized  quantit ies:  

F(z(k),G(k)) = A + a B(x(k))u(k) 
a x  G(k) .G(k)  

H(z(k+  l/k)) = 
(k+l/k) 

(2.2.30) 

(2.2.31) 

The expressions  for  the  above  partials  are  given  in  Appendix A of [I] .  Recursive 

equations for  the  "bias-free"  gain KO, bias  correction  matrix V, and  the  bias  gain K, 

are  given  in  Chapter 2 of [ l ] .  

The state  estimation  error  covariance P,(k+l/k),  bias  estimation  error 

covariance Pb(k+  l/k), and  cross  covariance of s ta te   and  bias  PXb(k+l/k)  together 

define  the  prediction  error  covariance  for  the  composite  no-fail   f i l ter .  They a re  

defined by [?I,[ 131: 

P,(k+  l/k)=P,(k+  l/k) + U(k)P,(k)U'(k) (2.2.32) 

(2.2.33) 

(2.2.34) 

with 



[ 
P,(k+ 1/k) P,&+ l /k)  

P(k+l/k)  = 
P;b(k+l/k) pb(k> I 

and  where  P,(k+l/k) is the  prediction  error  covariance  associated with the  bias-free 

computations  and V is  the  bias  correction  matrix.  (See  eq. 2.23 in  [l]). The matrix 

U(k) is defined  as: 

U(k) = F(s(k),G(k))V(k) + B(?(k)) 

(2.2.35) 

(2.2.36) 

Recursive  equations  for  these  matrices  are  given  in  [l]. The innovations 

variance,  R,(k+l),  can be expressed  as: 

R,(k+ 1) = E{r(k+  l)r’(k+ I ) [  

= [Hs(k+l/k)D]  P(k+l/k)  [H(%(k+l/k))D]’ + R (2.2.37) 

In the  next  section,  the  operation of the  detectors ,  which are  driven by the 

expanded  innovations of the  fail-free  filter  described  above, will be  discussed. 

2.3 Detector  Implementation 

In this  section,  the  blocks in  Figure 1 labeled  “residual  computation”  and 

“detectors” will be  explained. In the  residuals  computation  block,  the  residuals  for 

the  individual  sensors  are  first  computed,  and  then,  the MLS measurement  residuals 

are  filtered  to  compensate  for  colored  noise  in  these  sensor  outputs. The processed 

measurement  residuals  then  drive a bank of detectors,  where  each  detector  delivers a 

failure  corrected  residual  to  the  likelihood  ratio  computers.  Each  detector  tracks  the 

occurrence  and  level of a hypothesized  sensor  failure  and  compensates  the  no-fail 
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f i l ter   res iduals   such  that   the   effects  of the  hypothesized  sensor  failure  are  removed 

from  the  residuals. 

2.3.1 Expanded  Residuals 

As seen  from  Figure  1,  the  residual  computation  block  receives  as  inputs,  the 

replicated  measurement  sensor  signals  and  the  no-fail  filter 's  estimates  for  the 

averaged  measurements. I t  gives a s  its output  an  expanded  residual  and  inverse of 

the  innovations  covariance  for  these  expanded  residuals.   That is, this  block  generates 

the  residual  sequence  (and  i ts   associated  covariance)  which would  have  been 

generated  by  the  no-fail  filter if i t   had  used  the  unreplicated  measurements.  

In discussing  these  issues, it is convenient  to  define  sensor ~JJ= to   be  the 

generic  type of the  sensor  measurement of in te res t ,   such   as  MLS azimuth, or body P 

gyro  output,   and  sensor  replication t o  be  the  particular  replication of in te res t  (i.e., 

second  replication of MLS range).  The  replication will be  noted by a  superscript   in 

the  text   ( i .e . ,  yAz = first  replication of MLS azimuth). 

The residuals  for  each  replicated  measurement  are  formed  as  follows: 

r ' ( k + l )  = y i ( k + l )  - h(Z(k+l/k))  - Ds(k)  (2.3.1) 

where 

Y = [YA,.Yf, 9 Y  r"'Y **eJY+J&Y+l1 i  i  i i i  (2.3.2) 

The  expanded  innovations  for  a  dual  redundant  sensor  set  are  then  given  by  [note:  in 

[l] re was  referred  to   as  ro] 
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r,(k+l) = 

(2.3.3) 

LI 

The innovations  variance, R(k+l) (called H k + l )  in [l]), of the  expanded  residuals 

is  found  by  straightforward  substitutions  to  eq.  (2.2.37) as: 

R,&+ 1 )  R,(k+ 1)-R 
R(k+l) = 

R,(k+ 1 ) - R  R,&+ 1 )  1 (2.3.4) 

where R is the  measurement  noise  covariance  for  each  set of replicated  measurements, 

respectively.  Equation  (2.3.4)  assumes  that  all  measurement  sensors  are  healthy. If, 

however,  the  jth  sensor  has  been  removed from the EKF, then R(k+l)  must  be 

collapsed  by  eliminating  the  jth row and  column. 

2.3.2 Treatment of Colored Noise 

As discussed  in  the  Interim  Report [l], the  failure  detection  performance of the 

fault  tolerant  system with  colored MLS measurement  noises  severely  degraded  due  to 

false  alarms. This is  to  be  expected,  since  any  time  correlation  in  the  no-fail  filter 

residuals looks like a time-varying  bias  failure  to  the  detectors.  Therefore,  it  is 

essential  to  filter  out  the  correlation  in  the  residuals  due t o  the  colored MLS noise  in 

order  to  have a robust  failure  detection  system. We have  investigated  the following 

methods of treating  colored  measurement  noise  in  our  study: 

I. Estimate MLS noise  states  in  the  no-fail  filter 
11. Use difference of MLS measurements 
III.Use suboptimal  no-fail  filter  accounting  for  colored 

IV. Post  process MLS residuals  to remove  colored  noise 
noise 
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I) Estimate MLS noise  states  in  the  no-fail  filter: 

From Section 2.2 eq. (2.2.24) we have  for  the MLS measurements: 

y i ( k + l )  = h i (x (k+ l ) )  + b iv i (k+ l )   i=1 ,2 ,3  (2.3.5) 

where  {yi,   i=1,2,3)  are  the MLS range,  azimuth,  and  elevation  measurements, 

respectively. In the  derivation of the  detector-estimator  algorithms,  the  noises  vi(k), 

were  assumed  to  be  white  Gaussian  sequences. However, these  noises  are,  in  fact, 

time correlated  and  are  generated [3] via: 

v i ( k + l )  = + i v i ( k )  + n i (k )  (2.3.6) 

where  ni(k)   is  a white  Gaussian  sequence. So the  direct  approach would be  to 

augment  the  system  states  with  the MLS noise  states,   vi ,   and  to  estimate  these 

variables  along  with  other  states. The obvious  advantage of this  method is tha t   the  

resulting  filter  residuals would b e  white  and  the  false  alarms would be  greatly 

reduced. The disadvantage of this  technique  is  that  the  numerical  complexity of the 

filtering  algorithms would be  increased  due  to  the  higher  order  covariance 

computations  involved.  Since  the  execution  time of the  filter  algorithm was already 

high, we have  decided  not  to  implement  this  approach. 

11) Use difference of measurements: 

In this  approach  developed  by  Bryson  and  Henrikson  [26],  the  filter  equations 

are  driven by the  difference of measurements  defined by: 

z i ( k + l )  = Yi(k+l )  - (a iyi(k)  (2 .3.7)  

The noises  associated with the  derived  measurements  zi(k+  1)  are  white. Although the 
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filter  dimension  does  not  increase in this  method,  the  filter  algorithms  become  more 

complicated  due  to  the  correlation  between  process  and  measurement  noises 

implemented. The extension of this  differencing  scheme  to  the EKF gets  even  more 

complex  due  to  the  linearizations  involved. For instance,  the  measurement  partials 

need  to  be  computed  both  at  the  filtered  state  estimates  and  at  the  predicted  state 

estimate. W e  have  implemented  this  scheme  by  making  some  simplifying  assumptions 

and  found  the  detection  capability of this  technique  to  be  unacceptable. This  was 

largely  due  to  the  fact  that a bias jump of magnitude m in the  measurement  yi  results 

in a jump sequence  defined by: 

~ m , ( l - ~ i ) m . ( l - ~ i ) m . . . . ~  (2.3.8) 

in the  derived  measurements z i ( k ) .  Therefore,  the  detectors  had  difficulty in 

estimating  the  failure  magnitude  due  to  the  initial  spike of magnitude m .  

I11 Use suboptimal  filter  accounting  for  colored  noise: 

In this  approach  suggested  in [15], suboptimal  filter  gains  are  determined by 

minimizing the  filtering  error  covariance  accounting for the  colored  noise. The 

advantage of this  approach is that  the  f i l ter  dimension  does  not  increase. We have 

derived  the  algorithms  for  this  filter  along  the  lines  presented  in [I51 for colored 

process  noise. However, an  analytic  evaluation  revealed  that,  although  this  suboptimal 

filter  could  improve  no-fail  filter  estimation  performance, it could  not  guarantee  the 

whiteness of the  resulting  innovations  sequence. 

IV) Post  process  residuals  to  remove  colored  noise: 
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where v^(k) is the  estimate of the  MLS noise  state. The processed  innovations 

r i (k+ l)[r (k+ 1) - +iv^ i(k)]  are  then  used  to  drive  the  bank of detectors.  

The implementation of this  scheme  resulted  in a substantial  reduction  in  the 

false  alarms  associated with  colored MLS noises. The failure  detection  performance  is 

essentially  the  same  as  the  white  noise  case  for  measurement  sensors. However, the 

addition of these  first  order  filters  degraded  the  detection  capability  for  soft  input 

sensor  failures. The insertion of these  first-order  filters  naturally  necessitate 

changes  in  the  variance of the  innovations  used by the  detectors,   and  detector 

observation  matrices. 

2.3.3 Detectors 

Every detector is driven  by  the  expanded  residuals  sequence of the no-fail 

filter. For each  sensor  type  and  replication,  there is a specific  detector which keeps 

t rack of how a failure  in  that  sensor  occurring  at  the  beginning of a decision window 

propagates  through  the  no-fail  filter  dynamics  to  affect  the  expanded  residuals. 

Based  on  this  propagation  effect,  each  detector  estimates  the  level of the 

corresponding  sensor  failure  and  outputs a failure  compensated  residual  sequence 

which is used by the likelihood  ratio  computers. 



A typical  (say,  i’th)  input  sensor  detector  estimates a postulated  bias jump in the  

i’th  input  at  the  beginning of a decision window (denoted by  time ko) s o  that   the   i ’ th  

input  sensor  detector  design is based  on  the following modification of the  system 

dynamics  given by eq.  (2.2.12): 

x(k+ 1) = Ax(k) + B(x(k))[u(k) - bu] + Bi(x(k))m i (k)  + uQ + n(k)  (2.3.10) 

mi(k+l )=mi(k)  with mi(ko)=mi  and  mi(k)= 0 for  k<ko  (2.3.11) 

where  Bi(x(k)) is minus the  i’th  column of the  input  matrix B(x(k)) and m i  is  the  failed 

bias  jump  magnitude of the  i’th  sensor  to  be  estimated. On the  other  hand,  the 

detector  for  the  i’th  measurement  sensor  failure is based  on  the following modification 

of the  measurement  equation given  by  eq.  (2.2.26): 

y (k+l )=h(x(k+l ) )  + by + Dimi(k) + v(k+ l )  (2.3.12) 

mi(k+l )=mi(k)  with mi(ko)=mi  and  mi(k)=O  for  k<ko  (2.3.13) 

where m i  is the  failed  bias jump magnitude  for  the  i’th  output  sensor  and D i  is a 

column vector with unity  entry  at  the  i’th row and  zeroes  elsewhere.  It is assumed 

that  the  failed  bias jump magnitudes a re  unknown  nonrandom  variables. 

As mentioned  previously,  the  detectors  utilize  the  residual of the  no-fail  filter 

as  a measurement  equation. In Appendix C of [ l] ,   i t   is  shown that  the  residual of the 

no-fail  filter,  in  the  case of i’th  failure  hypothesis,  can  be  expressed  as: 

r (k+ l )  = Ci(x^(k+l/k))mi + ?(k+l)  (2.3.14) 

where  F(k) is the  innovations of the  no-fail  filter  under  the  no-fail  hypothesis. 

Therefore,  P(k) is approximately a zero mean white  noise  sequence  with  variance 

R(k+l)  defined by eq.  (2.3.4).  Referring  back  to  eq.  (2.3.14),  P(k+l) would then be the  

measurement  noise  in  the  i’th  detector model and  the  measurement  matrix 
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Ci(z(k+  l/k))  would  be  given  by  (see  Appendix C in [ 13 for  the  derivation):  

C i ( z (k+ l /k ) )  = [H(?(k+l/k)) D] B, Vi(k) 
I 1 

+ [H(z(k+l/k) D] (2.3.15) 

In the  case of linear  systems  the  relations  above,  which  show  the  additive  effects 

of bias jump failures  on  the  no-fail   f i l ter ,   are  exact.  In the  nonl inear   case,   they  are  

obtained  by  expanding  the  system  nonlinearities  about  the  no-fail  filter  estimate 

under  the  i’ th  hypothesis,   deriving  the  l inearized  f i l tering  error  equations [?I, and 

following the  procedure  outl ined  in [l]. 

Note tha t   t he   l e f t  most  matrix  product  in C i  above  shows how the  failure 

propagates  through  the  dynamics  to  affect   the  residuals;   the middle product  depicts 

the  direct   effects of input  failures,   and  the  r ight  most  matrix  i l lustrates  the  direct  

effect of output  failures.   Furthermore,   Bi(e(k)) is zero  in  the  case of measurement 

sensor  failures  and, D i  is zero in the  case of input  sensor  failures.  The  matrix 

Fi(?(k),ii(k)) is defined  by: 

Fi(?(k),C(k)) = F(?(k),Ci(k)) 

+ a Bi  (x(k))mi 1 (2.3.16) ax A 

x (k )  .Gi  ( k )  

Where  F(z(k),C(k)) is given  by  eq.  (2.2.30).  (Note,  for  measurement  sensor  failures 

F i  = F since  the  failures  do  not  enter  through  the  input  weighting  matrix B.) 
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The matrix Vi(k) is analogous  to  the  bias  correction  matrix in the  separated EKF 

algorithm [i'] and  represents  the  propagation of a sensor  failure,  occurring  at time k, 

(recall k, i s   the   s ta r t  of the  estimation  residual window), through  the  no-fail  filter 

dynamics. I t  is  computed  using  the following recursive  relationship: 

- - 
Vi(k+l )  = AiVi(k) + Bi (2.3.17) 

where Vi(ko) = 0, and; 

The gains K, and K, are  given by eqs.(2.2.29)-(2.2.31). Note that  eq.  (2.3.17)  is 

similar  to  the  recursive  relation  for  the  bias  correction  matrix  recursive  relation in 

the  separated EKF algorithm.  This is to  be  expected  since Vi(k+l) represents  the 

effect of a sensor  bias  failure  on  the  composite  no-fail  filter  and V(k+l) in  the 

separated EKF represents  the  effect of a normal  operating  bias on the  bias  free 

portion of the fail free  filter. The postulated  sensor  failure's  effect  on  both  state  and 

normal  operating  bias  estimates  are  thus  computed. 

Summarizing, the  i ' th  detector  design  is  based  on  the  observation model 
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described  by  eq.  (2.3.14)  and  constant  failure  dynamics. The development  up  to  this 

point  has  assumed  the  value of m i  is known. In reality, m i  is nonrandom,  but 

unknown.  Therefore,  one  must  continuously  estimate its value. 

The i’th  detector  estimate, hi (k), of the  i’th  sensor  failure  jump,  mi(k),  can  be 

computed  by  the following first  order  linear Kalman filter  for  the  case of measurement 

sensor  failures,  and  by a first order  approximate  nonlinear  filter  in  the  case of input 

sensor  failures: 

- Ci(k+l .%(k+l/k))Gi(k)]  (2.3.18) 

where  the  detector  estimate  Gi(k)  is  initialized  at  the  start of a residual window with 

iiii(ko)=O.  The detector  gain is computed  by: 

G i ( k + l . ~ ( k + l / k ) ) = P i ( k + l / k + l ) C ~ ( k + l , ~ ( k + l / k ) ) R ~ ’ ( k + l )  (2.3.19) 

where  Pi(k+  l /k+ 1) is the  error  covariance of the  i‘ th  detector  bias jump estimate. 

The information  matrix,  Pi-l(k/k), of the  i‘th  detector  is  propagated  recursively 

through: 

P i ” ( k + l / k + l )  = Pi”(k/k) 

+ C;(k+l,f(k+l/k))R”(k+l)Ci(k+l.~(k+l/k)) (2.3.20) 

with 

Pi-’(k,/k,)=O 

That  is,  the  failure  bias  jump  at  time k, is  assumed  to  be a zero  mean  random  variable 

with  infinite  covariance (or equivalently,  zero  information). In the  case of output 
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sensor  failures,  the  detector  implementation  described  by  eqs. (2.3.18)-(2.3.20) above 

is  an  exact  linear Kalman filter  for  the  hypothesized  failure model  specified by 

eqs. (2.3.10)-(2.3.15). In the  case of input  sensor  failures,  the  detector  becomes  an 

approximate  nonlinear  filter  due  to  the  dependence of F i  in  eq. (2.3.16) on  the  failure 

bias  magnitude, m i  where  iiii(k)  is  used  in  the  evaluation of Fi(?(k),ii(k)). 

In summary,  the  detector  block  consists of a bank of first order  estimators 

driven  by  the  expanded  innovations of the no-fail  filter.  Each  detector  corresponds 

to  a different  sensor  failure  hypothesis,  and,  corresponding  to  each  detector,  there is 

an  associated  residual  data window length. The bias jump magnitude for a given 

sensor  failure,  hypothesized  to  happen  at  the  start of the  residual window, is 

estimated by the  detector  corresponding  to  that  sensor. The residuals of the 

detectors  along with the  residual of the no-fail  filter  are  used  in  the  decision  block. 

In the  next  section,  the  decision  rules  used  in FINDS will be  discussed. 

2.4 Decision R u l e  

As seen  in  Figure 1, the  failure  compensated  residuals from each of the  sensor 

failure  detectors  along with the  expanded  innovations  sequence of the no-fail  filter 

are  used  in  deciding  the  most  likely  failure mode. To arrive  at  this  decision, M-ary 

hypothesis  testing,  based  on a decision  residual window, is  utilized. 

Tests  for  isolated,  singleton  sensor  failures will be  examined in the  next  section. 

Tests  for  multiple  failures  (two  failures  occurring  at  the  same  instant of time) will be 

discussed in the  last  section.  Currently,  tests for multiple  failures  are  only  performed 

for MLS azimuth  elevation,  and  range  sensors  in  order  to  detect  antenna  failures. 
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2.4.1 Tests for Single Sensor Failures 

Tests  for  single  sensor  failures  are  derived  through  a  multiple  hypothesis  testing 

formulation.  Given M sensor  failure  models,  formulate  the following M+l hypotheses: 

H,: r,(k) = P(k) k=k,,k,+l ,..., k,+l, (2.4.1) 

Hi: r,(k) = ?(k) + Ci(z(k/k- l ) )mi  i=1 ,2 ,  ..., M 

where r,(k) is  the  actual  expanded  innovation  sequence of the  no-fail   f i l ter ,  P(k) is 

the  innovations  sequence of the  no-fail  filter  under  no-fail  conditions,  and 1, is the  

length of the  decision  residual  data window on  which  the  M-ary  hypothesis  test  is 

based.  Recall  from  the  previous  section,  that F(k) is a  zero  mean  white  noise 

sequence  with  variance R(k) defined  by  eq. 2.3.4. The length of the  decision  residual 
hl 

window is, in  general,  different  from  the  estimation  residual  data  windows  described  in 

the  previous  section. An M-ary  hypothesis  test will be  used  to  decide  whether  the 

no-fail  filter  is  operating  under  no  failures  (hypothesis H,), or under   the  i ' th   sensor  

bias  jump  failure  (hypothesis Hi). 

The  M-ary  hypothesis  test,  described  in  detail  in  [18],  minimizes  the  Bayes  risk 

which is a  weighted  cost of making  incorrect  decisions. In the  special   case,  when 

costs associated with  making  wrong  decisions  are  all  equal  and  those of making 

correct  decision  are  zero  ( i .e. ,  Ci  j = l  for ifj  and C i  =O), then  the  optimal  Bayesian 

decision  would  be t o  choose H i  corresponding  to  the  smallest  one of the  M+1 

likelihood  ratios A i  given  by: 

kd+' d 

k=kd i  
A i  = l  C r ' i (k )   k" (k) r i (k)  - lnPH ;i = O,l, ... m (2 .4.2)  

Stated  differently.  the  decision  rule is equivalent  to  choosing  the  hypothesis, Hi, 
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corresponding  to  the  largest a posteriori  probability  conditioned  on  the  residual 

window Y(K). 

The a priori  probabilities, PHi, represent  our  prior  knowledge  about how often 

particular  sensors  fail. In this  study,  the a priori  probabilities will be  based  on 

typical  manufacturers  specifications of mean  time  between  failures (MTBF). The 

following rule, which  simply converts MTBF (in  hours)  to MTBF in  1/2 a decision 

window,  will be  applied. 

P = 2*MTBF/(3600*ld*~) 
Hi 

M 
(2.4.3) 

2.4.2 Test for Simultaneous Multiple Failuces 

While the  single  sensor  failure model described  in  the  previous  subsection, may 

be  able to  handle  multiple  failures by viewing them as  a sequence of single  sensor 

failures,  it  is  not  clear  that  the  fault  tolerant  system  can  decipher  simultaneous 

multiple  failures  without  any  modifications.  These  types of failures  are  especially 

important  for  the MLS measurements  since  an  antenna  failure would produce a 

simultaneous  multiple  failure  in  the  corresponding MLS measurements. In this 

subsection, a number of possible  additions  to  the  fault  tolerant  system  structure, 

which  have  been  analyzed  for  the  testing of multiple  simultaneous  failures, will be 

discussed. 

Recall that  the  previously  discussed  fault  tolerant  system  structure  requires a 

(first order)  detector  for  each  sensor  utilized by the  no-fail  filter.  Since  the  no-fail 
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filter  uses  only  one  set of the  redundant  input  sensors  (accelerometers  and  rate 

gyros),  multiple  failures  for  input  sensors  need  not  be  considered. On the  other  hand, 

because  the  no-fail  filter  uses  both of the  dual  redundant  measurement  sensors, (MLS, 

IAS, IMU measurements),  multiple  failures  for  output  sensors  must  be  taken  into 

account.  Of course,  any  combination of (input or measurement)  sensors would 

consti tute a valid  simultaneous  failure.  Since  the  number of possible  combinations  are 

exceedingly  high,  and  since  most  probable  simultaneous  failures  are  due  to MLS 

antenna  malfunctions, we have  decided  to  incorporate  multiple  failure  tests  for MLS 

azimuth,  elevation  and  range  sensors  only.  There  are  basically  three  approaches  one 

can  take  in  dealing with  simultaneous  multiple  failures  within  the  context of the 

existing  fault  tolerant  system  structure: 

I. No Modifications 

11. Multiple  Failure LR’s 

111. Multiple  Failure  Detectors  and LR’s 

I. No Modifications 

The thought  behind  this  approach is tha t   the  FTS, designed  for  single  failures, 

might be  robust  enough  to  detect  multiple  failures  sequentially. This  would be a 

desirable  property,  since  arbitrary  multiple  failures  could  be  handled  without 

additional  computational  burden. To investigate  this  avenue we have  examined  the 

failure  detection  and  isolation  performance of the  existing FTS under  multiple MLS, IAS 

and IMU failures. As one  might  expect,  one  problem  with  this  approach  is  that  the 

posteriori  probabilities  tend  to  converge  to  equal  values  (such  as 1/2 or 1/3) . 

Generally  speaking,  the FTS worked  quite well for  cases  when  the a posteriori 



probabilities  converged  to  values  greater  than 1/3. Multiple failures  were  correctly 

detected  in a sequential  fashion  (decisions  were  one  sampling  interval  apart). 

However, since  other  cases  produced  more  unsatisfactory  results, it was clear  that  

this  approach was not  adequate  in  general. 

11. Multiple  Failure LR's  

The next  level of complexity would be to  include new LR tests  for  simultaneous 

multiple  failures,  without  adding new detectors  for  these  hypotheses.  Recall from 

eq.(2.3.14)  that  the LR tests  for  single  failures  assume  the following failure  signature 

models  for  the  no-fail  filter  residuals: 

ro(k+l )  = Ci(k+l )mi  + ?(k+l )  i = O , l , . . , M  with m o = O  (2.4.4) 

where ro is  the  residual  sequence of the  no-fail  filter, m i  is  the  failure  level  for  the 

i ' th  sensor,  C i  is  the  "observation"  vector  which  relates  the  i 'th  failure  level  onto  the 

no-fail  filter  residuals,  and  P(k+l)  is  the  white  noise  sequence which  would have  been 

obtained  for  the  no-fail  filter  residuals if there  were no failures  present (Remember 

that  this  failure  signature model  was derived by linearizing  the  error  dynamics).  Since 

the  error  dynamics  are  linear, if there  were two sensor  failures  (say i and j)  

simultaneously  present,  then  the following failure  signature model would result: 

ro (k+ l )  = Ci(k+l )mi  + Cj(k+l)m + ?(k+l)  
j 

(2.4.5) 

where m i  and m are  the  failure  levels  for  the  i ' th  and  j ' th  sensqrs, C i  and C .  are   the 

measurement  vectors  for  the two failure  models  (dependency  has  been  dropped  for 

convenience). Combining the  failure  levels  into a single  vector, & the  failure  signature 

model  becomes: 

j 1 
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r,(k+l) = [Ci(k+l)  Cj(k+l)]ih + ?(k+l)  (2.4.6) 

i=1,2,  ..., M 
j=1,2, ..., M 

This  model is exact  for  measurement  sensors  and  approximate  for  input  sensors  due  to 

the  dependence of C i  and C on m i  and m respectively.  That is, when the  i ' th  and 

j'th  sensor  failures  are  considered  simultaneously,  the  linearizations  for  the  input 

j j .  

matrices  can  be  slightly  different  than  the  case in  which the  failures  are  considered 

separately.  For the  evaluation of the  LR's ,  we need  their  estimates 6ii and fii One 

approximation is to  use hi and 6 from the  single  sensor  failure  detectors.  Clearly, 

by considering  the  i'th  and  j'th  sensor  simultaneously,  estimates  for m i  and m.  may be 

improved  by  using a second  order  detector. Using the  estimates from the  single 

sensor  failure  detectors, we obtain  the following residual,  corrected  for  the 

simultaneous  i'th  and  j'th  failure: 

j '  

j 

1 

r .  . ( k + l )  = r,(k+l) - Ci(k+ l )  iiii(k) - Cj(k+l )  iiij(k) 
' J  

(2.4.7) 

So tha t  LR's for  the  dual  sensor  failures  can  be  computed by: 

kd+'  d "1 

k=kd I j  
A i  j(r(K)) = 1. r'i j(k)R (k)ri  j(k)-lnPH, (2.4.8) 

i = l ,  ..., M 
j = l ,  ..., M 

where P, is the  a priori  probability of the i and j sensors failing  simultaneously. 

Computational  requirements  for  this  procedure  are  relatively  modest.  Since new LR ' s  
i j  

introduce  only  recursive  scalar  quantities,  the  additional  computations  are  not 

excessive.  Caution  should  be  exercised in selecting  the a priori  multiple  failure 

probabilities  because  false  alarms  associated with these  failure models  could  have 
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serious  effects  on  the  system  performance. In this  study  the following rule  (which 

assumes  independence  between  failures)  is  used: 

'H.. = 'Hi * 'H. (2.4.9) 
' J  J 

In addition,  to  reflect  the  type of multiple  failure  expected, we have  chosen  the 

following  form for ii defined  in  eq. (2.4.6): 

- m = [(mi+mj)/Z , (mi+mj)/2]  (2.4.10) 

111. New Detectors  and LR Tests 

In this  approach,  the  same  procedure  is followed as  described  in  the  previous 

section,  except, new second  order  detectors  are  implemented  using  the  failure 

signature  models,  eq.  (2.4.6).  for  multiple  failures. 

These  detectors will estimate m i  and mj, simultaneously. Note that  they will be 

second  order  for  the  dual  failure  case  considered  here. Whlle this  procedure is 

optimal  for  multiple  failures, we believe that  the  computational  benefit  to  be  gained is 

far  outwelghed by  the  increased  computational  requirements. 

In conclusion,  after  examining  the  three  approaches  outlined  above, we've 

adopted  approach 11, modification of the LR's, as a reasonable  method of handling 

multiple  failure  conditions. 
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2.5 Healing Tests 

An important  aspect of the  developed  fault  tolerant  system is its  ability  to 

monitor  sensors which it has  isolated as "failed", and  to  determine if they  have 

recovered. 

A healing  test  can  be  useful  for a number of practical  reasons.  For  example, if 

the  sensor  only  fails  intermittently, or i f  unmodeled  (normal  operating)  characteristics 

of the  sensor  manifest  themselves as moderate  errors  for  short  periods of time, i t  

would  be  useful to  heal  the  sensor  after  the  sensor  recovers or the  transient  has 

passed.  Another  practical  utility of the.se  tests  occurs  when  the FTS incorrectly 

detects  a sensor as  failed  (false  alarm). 

There  are, of course,  pros  and  cons  to  using  healing  tests  at  all. I t  can  be 

argued  that  if,  for  example, a sensor  fails with an  increased  scale  factor  error  then  i t  

is  only  detectable  during  transient  maneuvers  and will appear  "healthy"  otherwise. In 

this  case,   the  sensor may be  correctly  detected as "failed",  only to  be  "healed"  once 

the  transient  has  passed. Admittedly, these  sor ts  of problems  do  exist;  however,  since 

in  this  study, we have  adopted simple  models for  the  normal  operational  sensors, 

healing  tests  are a sensible  alternative  to  increased  redundancy or modelling 

complexity.  Moreover,  the FTS maintains a log of all FDI activity,  such  that a sensor 

with a history of chronic  problems  can  be  identified  and  dealt  with. 

In our FTS environment,  sensors  used by the  no-fail  filter as inputs  are  treated 

differently  than  those  used as measurements,  when  testing  for  healing. The essential 
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difference  is  that  failed  input  sensors  (body  mounted  accelerometers  and  rate  gyros) 

are  compared  to  "healthy"  sensors of the  same  type  (with  the  constraint  that  these 

healthy  sensors  are  also  being  used  by  the  no-fail  filter),  whereas  failed  measurement 

sensors  can  be  compared  to  estimates  provided  by  the  no-fail  filter. The implications 

of this  difference,  along  with  the  specifics of the  employed  healing  tests, will be 

discussed in the  ensuing  subsections. 

2.5.1 Test for Input Sensor Recovery 

A likelihood  ratio (LR) t es t  will be  used  to  determine  whether or not  an  input 

sensor,  which has  failed  and  been  taken  out of the  no-fail  filter,  has  recovered. The 

basic  idea is to  compare  the  output of a failed  sensor  with  another,  like  sensor, which 

we assume  is  healthy. The comparison is carried  out  as  the  difference  between  the 

two signals,  over a fixed  length  healing  test window of length 1,. Likelihood  Ratios a re  

computed  based  on  this  comparison,  along with  information  about  expected  normal 

operating  bias  levels  and  expected  failure  levels.  Discrete  decisions  are  made  at  the 

end of a complete  healing  test window. In other  words, if the  FTS decides  that a 

sensor  has  failed  before  the  end of a healing window, no  healing  decision will be  made. 

An important  constraint  imposed by our FTS is that  the  "healthy"  sensor  be  currently 

used by the  no-fail  filter.  This  is  done  because  only  those  sensors  used  by  the  filter 

are  monitored  for  failures. As a result,  standby  sensors  (not  used by the  filter),  could 

have  failed  already. 

Here we  will consider  the  healing  test  for  an  arbitrary  input  sensor.  Initially,  all 

input  sensors  are  assumed  to  be  working.  Therefore,  there will not  be  any  tests  for 

healing  until  an  input  sensor  actually  fails. To describe  the  healing  mechanism, we 
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begin  by  making the  following  assumptions  about  the  characteristics of a working and 

a failed  sensor: 
o "healthy"  sensor  model: 

u i (k )  = ut(k) + b i  + vi(k)  

o "failed" sensor model 

(2.5.1) 

ui(k)  = ut(k) + b i  + vi (k)  + m i  (2.5.2) 

where  ut(k) is the  " t rue" or  ideal  sensor  signal,  and b i  and  vi(k)  are  the  normal 

operating  bias  and  white  gaussian  measurement  noise  associated with the  i-th  input 

sensor  ui(k)  respectively. The term m i  represents a bias  failure of magnitude m i ,  

Suppose  an  input  sensor u l ,  fails  and is replaced by a second  (standby)  input  sensor 

of t he  same  type, up. These two signals  can  be  compared by  computing  the following 

difference  signal  over a healing  test window that  is  synchronized  to  the  start of a 

decision window (see  Figure 3). 

u(k) = [ ~ p ( k ) - ~ 1  (k)I k=k,+ I,...,k,+l,,  (2.5.3) 

A t  the  end of a healing  test window initiated  for  that  input  sensor, we tes t   for   the 

healing of the failed  input  sensor,  u,(k),  provided  no  failures  were  announced by the 

fault  tolerant  system. Note that  testing is not  performed  at  every  sample,  but  rather 

only a t   the   end  of each  healer window. Defining the following two hypotheses,  and 

incorporating  the  appropriate  sensor/failure models into  eq. (2.5.3), we obtain: 

Ho(u, healthy) H,(u,  not  healthy) 

u(k) = b2 - b,+  v2(k)-vl(k)  u(k) = b2-b, -m,  +v2(k)-vl(k) 

= Ab + Av(k) = Am + Av(k) 

where Ab = bp-  bl ,   and Av(k) = v2(k)-  vl(k). If the  variance of the two 
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measurements  are  equal (say ut ) ,  then  v(k) would be a zero  mean  white  Gaussian 

sequence  with  variance 20:. 

Based  on  the  expected  value of the  normal  operating  biases, we can  put   the  

following constraints  on Ab and Am: 

-P,F Ab 5 P, 

Am < -f ,  or  Am 2 f ,  

where P, and f ,  are  expected  levels  for  the'  normal  operating  bias  and  failure  level  for 

input  sensor  type  u,  respectively. We can now apply  the  likelihood  ratio  for  this 

composite  hypothesis  testing  problem  to  get  the following decision  rule [18]: 

kd+' h  H 
c [Au(k) - EOl2 - [Au(k)- iii ,I2 >:2(2~~3ln7  
k= 1 "0  

where3 6, and G, are   the  maximum likelihood (ML) estimates  under  each  hypothesis 

given  by: 

Eo= P, if Aii > 8, 

€io= P, if Aii < -P 

H1 

HO 

'The mathematical  symbol 2 i s  defined  as f o l l o w s .  given:  a 8 b. hypothesis H, i s  

considered  true i f  a > b;  and hypothesis H, is true i f  a < b. 
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where, 

6i1 = Aii if A a f ,  or  Aii 5 - f ,  - 

1 m l =  f ,  if 0 LATI <f ,  

1 m l =  - f u  

For  instance, 

probability of 

if -fu<Aii < 0 

1 
the  choice  for  the  threshold 7 = 5 would  imply tha t   the  a priori 

a failed  sensor  not  healing is 0.95 [18]. 

In summary,  the  input  sensor  healing  test is done  in  batches. The tes t  is only 

performed while the FTS considers a sensor "failed". A t  the  end of each  complete 

healer window, a likelihood  ratio  test is performed  to  ascertain  whether  the  faulty 

instrument  has  recovered or not. If a decision  indicating  that  the  faulty  sensor  has 

recovered is made,  the  only  action is to  change  the  status flag of that   input  sensor  to 

standby  status. 

2.5.2 Test for Measurement Sensor Recovery 

The recovery of a failed  measurement  sensor  can  be  detected,  as  in  the  case of 

input  sensors,  by  comparing  the  output of the  failed  sensor  with  that of a sensor of 

the  same  type which is currently  used by the  no-fail  filter. However, another 

possibility is to  compare  the  failed  sensor with an  estimate of its output  provided by 

the  no-fail  filter.  (Note  that  this  procedure is not  possible  for  input  sensors). The 

latter  approach  has  been  adopted  in  this  study  since  it   has  the  advantage of 

applicability  even  when a given sensor  type is not  utilized by the no-fail  filter.  That 
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is, all  sensors of a  given  type  have  failed  and  been  taken  out. 

Let's  consider  the  healing  test  for  an  arbitrary  measurement  sensor.  Suppose 

the  first replication of a  particular  measurement  type,  call it Z , ,  has  failed  and  been 

removed  from the  no-fail  filter. Assuming dual  redundancy,  only  the  second 

measurement, Z,, remains  in  the  no-fail  measurements. To mimic the  input  healing 

tes t   the  following residual  over  the  healing  test window is  computed: 

AZ(k) = Zl(k) - Z(k/k-1) 
-. 

k=kd+1,kd+2 , . . . ,  kd+lh  (2.5.4) 

Here  it is assumed  that  the  normal  operating  biases  for  the two measurements  are 

similar. Where h(z(k/k-l))  above  is  the  estimate of Z(k)  provided  by the  no-fail EKF. 

and  6(k)  is  the  no-fail  filter  bias  estimate. We then  have  the two hypotheses  (after 

substituting  eq.  (2.2.24)): 

H,(Z healthy) 

AZ = h(x(k)) - h(Z(k/k-l))  

+ b - 6, = ?(k) 

H, (Z ,  not healthy) 

AZ = m l  + ?(k) 

where ml)fZ or m 1  5 - fZ 

Under  hypothesis H,. ?(k) would be  a  white  Gaussian  sequence with zero  mean 

and  variance, u , given  by the  appropriate  diagonal  entry  of  the  residual  variance 

matrix of the  no-fail  filter. 

2 

2 

The LR tes t   can now be  applied  in  a  manner  similar  to  the  input  healing  test. 
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The ML estimate  for ml  would  be  given by: 

- 
if AZ 5 - fZ or  AZ 2 f Z  

- 

ii$ = + f Z  if o 5 ai < f Z  

- 
A ml = - fZ  if  - fZ< AZ<O 

SO that  the  composite  hypothesis  test  for  this  problem  becomes: 

If a  measurement  sensor  bias  is  estimated,  under H,, t h e r e  will be  a  normal 

operating  bias  mean  in  the  residuals.  In this   case,   under  H,, residuals  can  be 

computed  as: 

u 

AZ(k) = b + O(k), where -8, 5 b 5 p, 
N 

where, 

Kd+'  h 

K=Kd+l 
c j[Z(k)-6,I2 - [Z(k)-6il]21 2 H1 20,ln7 

HO 

In summary,  when  an  output  sensor  fails  and is removed  from  the  no-fail  filter 

measurement  set ,   i ts   output is compared  with  an  estimate  provided  by  the  no-fail 



filter. The LR computation  generates a  maximum likelihood  estimate  for  the  normal 

operating  bias  and  failure  level. The composite  hypothesis  test  is  done  at  the  end of 

every  complete  healing  test window. If the  test   indicates  that   the  sensor  has 

recovered,  the  measurement is incorporated  back  into  the  no-fail  filter  measurement 

set .  

2.6 Reinitialization Procedure 

Fault  tolerant  systems  in which analytic  failure  detection  and  isolation (FDI) 

techniques  are  used  on-line  to  identify  system  failures  usually  require some  level of 

compensation  in  order  to remove the  accumulated  effects of the  detected  failure  on 

the  system. In the developed FTS. sensor  failures  (especially  input  failures,  and  soft 

measurement  failures)  have  to  propagate  through  the  no-fail  filter  dynamics  (until a 

significant  residual  signature is generated)  in  order  to  be  detected.  Therefore,  the 

no-fail  filter  must  be  reinitialized  in  order  to  remove  the  accumulated  effects of the 

detected  failure  on  the  filter. In addition,  the  no-fail  filter  must  be  restructured 

after  the  isolation of a failure  to  account  for  the  loss of a sensor  input o r  

measurement. 

There  are -a number of ways  in  which  reinitialization  can  be  accomplished  within 

our  framework  (see [ 2 9 ] ) .  For instance,  the  measurements  can  be  reprocessed if the 

failure  onset  time  can  be  estimated  accurately. In our  problem,  however,the  exact 

failure  time  is  not  estimated  since a fixed  length window of measurements  are  used.4 

4The  procedure  for  finding  the  exact  failure  times is described in [13] and  involves  using 
a set of moving  windows  corresponding to different  failure  detection  times. 
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A second  problem  with  this  strategy is the  additional  requirement of saving  the  past 

measurements  for  the moving windows. Finally,  re-running of the  no-fail  filter with a 

previous  set of measurements,  generally,  cannot  be  done  in  real time. 

Another  method  involves  resetting  the  no-fail  filter  state  estimate  and 

covariance  using  the  same  procedure followed  in setting  the  initial  levels  for  these 

variables. The  drawback of this  procedure is its neglect of the  information  embedded 

in the  failure  decision  logic  and  associated  failure  level  estimates. 

If the  failure  level  estimates  provided by the  detectors  can  be  trusted,   then  the 

no-fail  filter  state  estimate  can  be  corrected by  adding  an  appropriate  increment  due 

to  the  detected  failure  as  suggested in [27]. The no-fail  filter  covariance  is  also 

incremented  in  this  procedure by  using the  covariance  associated with the  failure 

level  estimate.  Although  the  failure  level  estimates  provided  by  the  detectors  usually 

provide a reliable  failure  direction,  the  magnitude of the  failure  level  estimates  are 

not  usually  very  accurate  due  to  the  uncertainty  associated with failure  onset time 

and  detector  settling  time.  Moreover,. in  some applications,  it  is  not  desirable  to  have 

step  changes  in  the  plant  state  estimates  due  to  the  transients  produced,  in  devices 

which  use  these  estimates  as  inputs. 

These  drawbacks  associated with the  reinitialization  procedures  above  can  be 

minimized by resetting  only  the  covariance of the  no-fail  filter. In this  method,  the 

appropriate  increment of t he  no-fail  filter  covariance is found  by  computing  the 

conditional  covariance of the  no-fail  filter  state  estimate  condltioned  on  the 

observation  sequence  under  the  detected  failure mode. 
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Finally,  the  last  possibility  is  the  weighting of the  no-fail  filter  state  and 

detector  failure  level  estimates  by  the a posteriori  probabilities. In this  technique, 

instead of the  hard  switching  produced by a decision  rule,  the a posteriori 

probabilities  provide a soft  switching  between  the  failure modes. 

The reinitialization  methods  discussed  above  can  be  grouped  into  the following 

categories: 

o Reprocess  Measurements 

o Reinitialize  (Estimate  and)  Covariance 

o Reset  Estimate  and  Increment  Covariance 

o Conditional  Covariance 

o A Posteriori  Probability Weighting 

In our  study, we have  compared  only  the  second,  third  and  fourth  approaches which 

are  described  next. 

I)  Reinitialize  (Estimate  and)  Covariance: In this  approach,  the  no-fail  filter 

covariance  parameters  are  set  to  the  values  used  as  initial  conditions. The s ta te  

estimate is be  reinitialized by following the  procedure employed in  selecting  the  plant 

state  estimate  initial  conditions.  Naturally,  this  approach  generates  transients 

associated with the  settling of the  filter  gains  similar  to  that  encountered  in  the 

initial  stage of the  problem. 

11) Reset  Estimate and Increment  Covariance: In the  case of an  i’th  failure mode 

decision,  the  no-fail  filter  state  estimate would be  reset  to [24]: 
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where '(k) is   the   s ta te   es t imate  from the  no-fail  filter  (eq. (2.2.25)),  Vi(k) is the  

failure  correction  matrix  for  the  i ' th  failure mode (eq. (2.3.17)), and iiii(k) is   the   i ' th  

failure  state  estimate  (eq.  (2.3.18)) provided  by  the  i ' th  detector.  When the   s t a t e  

estimate is reset   according  to   the  procedure  above,   then  the  corresponding  predict ion 

error  covariance  is  given  by: 

EIZi(k+l/k)"x;(k+l/k)/Hi] = P(k+l /k)  + Ui(k)Pi(k)U;(k) (2.6.2) 

where Zi(k+  l,/k) is   the   s ingle   s tage  predict ion  error   associated  with  the  es t imate ,  

x^i(k), given  by 

Zi(k+l /k )  = x ( k + l )  - x^i(k+l/k) 

or,   rearranging  eq.  (2.6.3) 

Z i (k+ l /k )  = A[?(k) + Vi(k)iiii(k)] + Biiiii(k) 

(2.6.3) 

(2.6.4) 

= G ( k )  + [AVi(k) + Bi]iii(k) 

= ?(k+  l/k) + Ui(k)iiii  (k) 

where Ui(k)=AVi(k)+Bi,   P,(k+l/k) is   the  prediction  error  covariance of the  no-fail 

f i l ter ,   and P i ( k )  is   the  prediction  error  covariance of the  i ' th  detector.   Therefore,   the 

prediction  error  covariance of the  no-fail  filter  can  be  incremented  by  the  second 

term  on  the  r ight  hand  side of eq. (2.6.2) above if the   s ta te   es t imate   i s   rese t  

according  to   eq.  (2.6.4). 

The state estimate  above  is  the  optimal  (least  mean  square  sense)  estimate 

conditioned  on  the  i ' th  failure mode provided that the  failure  onset  time  and  the 
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failure  state  initial  statistics  correspond  to  those of the  actual  failure. However, in 

practical  applications  such  as ours, the  failure  onset  time  cannot  be  accurately 

estimated  due  to  the  necessity of using a bounded  set of detectors  as  opposed  to a 

growing  number  required  by a fully  optimal  decision  rule.  Moreover,  sudden  changes 

in  the  state  estimates would not  be  desirable  due  to  their  effects  on  the  automated 

landing  and  control  laws. 

111) Conditional  Covariance: To reduce  the  transient  effects  produced by the 

previous  method,  the  no-fail  filter  can  be  reinitialized by incrementing  only  the  error 

covariance by an  appropriate  amount following the  isolation of a failure. In this 

manner,  the  state  estimation e r r o r  il l  .>e no-fail  filter  can  be  compensated  gradually. 

In this  procedure,  the  appropriate  covarlance  to  be  used  is  the  conditional  covariance 

of the no-fail  filter  conditioned on the  given  observations  under  the  decided  failure 

mode. In other  words, we need  to  compute E[%(k+l/k)%(k+l/k)/Y(k),Hi] where 

%(k+l/k) is the  prediction  error of the no-fail  filter  defined  by 

%(k+l/k)=x(k+l)-z(k+l/k). Since  the  single  stage  prediction of the no-fail  filter  can 

be  expressed by (adding  and  subtracting  the  term Vi(k)fii(k) to   the R.H.S.)  

?,(k+l/k) = x(k+l) - [?(k+l /k)  + Ui(k)Gi(k)] + Ui(k)fii(k) 

= x(k+l )  - x^i(k+l/k) + Ui(k)Gi(k) (2.6.5) 

= "xi(k+l/k) + Ui(k)Gi(k) 

we have 
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$(k+l/k)?o(k+l/k) = zi(k+l /k)Ti(k+l /k)  

+ [gi (k+  l/k)G; (k)U; (k) + U (k)iiii (k)?;(k+ l)]  

+ U (k)iiii (k)iiii  (k)Ui (k)  (2.6.6) 

Taking the  conditional  expectation, given the  observation  sequence Y(k) and  the 

hypothesis Hi, of both  sides  above, we get 

E[~,(k+l/k)%~(k+  l /k)/Y(k),Hi] 

= E([~i(k+l /k)%'i(k+l /k) /Y(k) .Hi]  + Ui(k)iiii(k)$i(k)U'i(k)[ (2.6.7) 

The  middle term  in  eq.  (2.6.6)  vanishes  because  E[%i(k+l/k)/Y(k),Hi]= 0 and  the 

last  term  can  be  taken  out of the  conditional  expectation  sign. From the  properties 

of the  conditional  expectation for  Gaussian  random  variables  (Proposition 3 on p.  246 

in  [28]),  the Y(k) dependence of the  first  term  on  the  right  hand  side of eq. 

(2.6.7)  can  be  taken  out so that  using  eq.  (2.6.2) we get 

E[%,(k+l/k)?,(k+l/k)/Y(k),Hi] = P,(k+l/k) + Ui(k)Pi(k)U;(k) 

+ Ui(k)iiii(k)$i(k)U;(k)  (2.6.8) 

Therefore,.  the  no-fail  filter  covariance  can  be  lncremented by the  last  two terms  in 

the  equation  above. The last  term  represents  the  uncertainty  due  to  the  accumulated 

error  in  the  no-fail  filter  arising from the  failure. The preceding  term  signifies  the 

uncertainty  associated with the  estimation of the  failure  state. In this  method,  the 

accumulated  effects of the  failure  on  the  no-fail  filter  state  estimate  are  not  taken 

out;  however,  the  additional  uncertainty  added  to  the  no-fail  filter  covariance  reflects 

the  error accumulation  due  to  the  detected  failure mode. 
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Each of the  three  approaches  outlined  above  can, in principle,  provide  an 

estimate  for  the  reinitialization  “direction”  and  magnitude  after  the  detection  and 

isolation of a failure. The failure  directions  (provided by the  estimate  and/or 

covariance  increment)  can  be  used  to  selectively  reinitialize  those  parts of the  no-fail 

filter  affected by the  failure. The magnitude of the  reset  can  be  scaled  to  reflect  any 

inherent  uncertainty  about  i t .  In this way,  a slightly  stiffer  reset  can  be  generated, 

a s  a conservative  measure. Our fault  tolerant  system  uses Method 111. (conditional 

covariance)  for  resetting  the  no-fail  filter. 

2.7 Failure  Signature -- An Example 

In this  section  an example  problem will be analyzed  in  an  attempt  to  better 

understand  the  failure  signature  information  seen by the  detectors.  In the  context of 

this  example,  the  failure  signature of bias,  ramp  and  null  failures  on  no-fail  filter 

residuals will be  discussed.  Moreover,  the  inherent  difference  in  detectability  between 

the  input  and  measurement  sensors  and  the  distinguishability of various  sensor 

failures will be  apparent by  analyzing  this  simple  example. 

The example  chosen is a specxal case of our problem  involving scalar  position, x, 

velocity  v,  and  acceleration  variables  without  nonlinear  coordinate  transformations. 

Within this  framework,  consider  the  second-order  system 

x (k+ l )  = x(k) + Tv(k) 

v(k+l )  = v(k) + ra,(k) + n,(k) (2.7.1) 

where T is   the  sampling  interval  and  the  sensor  measurements x,,  v, and 8, are  

defined  by 
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(2.7.2) x,(k+ 1) = x(k+  1) + nx(k+l )  
v,(k+l) = v(k+l )  + nv(k+l )  
a,(k+l) = a ( k + l )  + n,(k+l) 

The measurement  noises  n,,nv,  and n x  a re  white  Gaussian  sequences  with  known 

statist ics.  For ease of presentation,  assume  that  the  no-fail  filter is implemented  with 

constant  gains by: 

% ( k + l )  = Z(k) + TG(k) + kxxrx (k+ l )  + kxvrv (k+ l )  (2.7.3) 

v^(k+l) = ?(k) +Ta,(k) + kvxrx (k+ l )  + k v v r v ( k + l )  

where  kx,,kxv,kvx  and kVV are   the no-fail  filter  gains  and  the  measurement  residual 

sequences rx  and rv a r e  defined  by: 

r x ( k + l )  = x, (k+l )  - [ji(k) + ~ ? ( k ) ]  (2.7.4) 

rv(k+  1)  =v,(k+l) - [?(k) + ~a,(k)] 

We will  now analyze  the  failure  signature  induced by a bias  failure jump in  each 

of these  three  sensors .  Using the  expression for  the  failure  correction  matrix,  eq. 

(2.3.17) we get  the following recursive  relation  for V x  (i.e..  the  failure  correction 

matrix  for  the  position  sensor  failure) 

[' "kxx 

Vx(km) = 

-TkVx + 1 -kvv (2.7.5) 

Using the  expression  above  and  the  one  for  the  failure  measurement  matrix,  eq. 

(2.3.15) we get  the following failure  signature  mean  for two samples  in  the  position  and 
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velocity'  measurement  residuals  for a bias jump m, a t  time k,: 

(2.7.6) 

As seen  above, a position  sensor  bias  failure  induces a jump in  position 

measurement  (with a level  equal  to  the  failure  magnitude)  and  one  sample  later 

induces a jump in  the  velocity  sensor with a level  scaled by the  no-fail  filter  gain  kvV. 

Based  on  this  observation,  several simple tests  for  position  sensor  failures  can  be 

posed. For instance,  we can  evaluate,  on-line,  the  statistic 

r(k,+ 1) = (rx(ko) + rv(ko+l) /kvx)/z  (2.7.7) 

to  estimate  the  position  sensor  failure level m, 

E[?&,+ 1)l = m x  

These  types of open-loop  generated  statistics would be  susceptible  to  accumulated 

errors .  The detectors  described in the  previous  section  use  the  failure  signature 

information  above  in  an  optimal  closed-loop  manner  (accounting  for  noise  statistics 

and  dynamics)  to  estimate  the  failure  levels. Similarly,  for a bias jump failure  in  the 

velocity  sensor vm with  magnitude m V ,  a t  time k,, we have  the following signature  on 

the  residuals: 

E[r,(k,)l = 0 ; E[rv(k,)l = m v  (2.7.8) 

E[r,(k,+l)] = - ( l+r)kxvmv ; E[r,(k,+l)] = ( 1-kvv)mv 

On the  other   hand,  a bias  jump  failure in the  accelerometer  sensor a,,, with  magnitude 

m, a t  time k, induces  the following signature mean  time history  on  the  measurement 
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residuals: 

E[r,(k,)] = 0 ; E[rv(ko)] = 0 

E[r,(k,+l)] = 0 ; E[r,(k,+l)]=-ma 

(2.7.9) 

Comparison of the  input  sensor  (accelerometer)  failure  signature  above with tha t  

measurement of sensors  (position  and  velocity)  shows  the  inherent  delay  in  failure 

signature  generation  for  input  sensors. This is because  an  input  sensor  failure  must 

propagate  through  the  no-fail  filter  dynamics  in  order  to  generate  failure  signature 

on the  measurement  residuals. We also  note  the  similarity of the  signatures  generated 

by  accelerometer  and  velocity  sensor  failures. For instance,  an  accelerometer  bias 

failure with  level ma  looks  like a velocity  sensor  failure with failure  level - ma.  

Moreover, if  we had  the  unfortunate  choice for no-fail  filter  gains  such  that  the 

relations 

-(l+T)kXV(-Tma) = (kXVT+(kVV-1)T2)ma 

(l-kvv)(-Tma) = (k,-2T)ma (2.7.10) 

were  approximately  satisfied  (choosing k,, = ./(I-.) and  kXv=kvv- 1 would exactly 

satisfy  them),  then  it would be  impossible to  distinguish  between  the  velocity  and 

accelerometer  failures by  looking at  this  failure  signature  time  history. This  simple 

example  clearly  shows how the  choice of no-fail  filter  gains  affect  the 

distinguishability of various  sensor  failures. In this  case,  the  next  sample of the 

failure  signatures  involving  terms  including  the  gains k,, and k,, would provide  the 
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necessary  distinguishability  information. 

We also  note  that  the  residual  signatures will eventually  converge  to  finite 

steady-state  values  since  the  recursive  relation  for  the  failure  correction  matrix 

given  by  eq.  (2.7.5) is governed by the  stable  closed-loop  filter  transition  matrix. 

Although we have  modelled sensor  failures  as  bias  jumps,  other  types of failures 

also  manifest  themselves  approximately  as  time  varying  biases. For instance,  consider 

a ramp  failure  in  position  sensor,  at  time k, with  level s x  (kfk,). In this  case,  the 

induced  failure  signature would be  given by (using  the  expression  for  the  time-varying 

failure  levels  in  [15]): 

E[rx(k,)] = 0 ; E[r,,(k,)] = 0 

E[rx(ko+l)] = S,T ; E[rv(k,+l)] = 0 

E[r,(k,+B)] = (2-k,,-7kV,)s, ; E[rv(k,+2)] = kV,sx? 

A hardover  failure  in  position  sensor  at  time k, with a level of h, will approximately 

result  in  the following failure  signature: 

'(2.7.11) 

(2.7.12) 

~ ~ ~ , ~ ~ o + ~ ~ ~ = ~ ~ - k , , - ~ ~ v x ~ ~ x - ~ ~ ~ , ~  ; E[rv(k,)l = kv,(h,-%(k,)) 

where ?(k,) = E[x(k,)] and  assuming  %(ko) = Z(k,+l).  These  relations follow since a 

position  sensor  failure with  level  h, a t  time k, is approximately  equivalent  to a bias 

failure with  level  hx-%(k,). 

Similarly, a null  failure  in  the  velocity  sensor  at time k, will approximately  result 
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in the  following failure  signature  mean time history: 

(2.7.13) 

where  it is assumed  that V(k,) = V(k,+l).  These relations follow since a null  failure  in 

the  velocity  sensor  at time k, is approximately  equivalent  to a bias  failure with  level 

-V(ko). 

70 



3. FTS PERFORMANCE EVALUATION 

In this  chapter  estimation  and  failure  detection  performance of the  developed 

integrated  avionics  sensor  fault  tolerant  system will be  discussed. The discussions will 

be  centered  around  specific  simulation  runs, which  point  out  characteristic  traits of 

the  FTS, rather  than  ensemble  statistics  (although  the  simulation was carried  out  in a 

Monte Carlo  fashion). The computer  program  used  for  these  simulations is called 

FINDS and is documented  in [2]. Current  performance of the FTS will be  empirically 

examined  in  this  chapter with regard  to: 

o Reliability of no-fail  filter  state  estimates,  i.e.  "fault  tolerance" 

o Speed of detection  and  isolation. 

o Failure  distinguishability  between  dynamically  related  sensors 

o Robustness of the  method  for  detection of non-bias  failures. 

o Use of navigation  quality RSDIMU in  lieu of flight  quality  body  mounted 
accelerometers,  rate  gyros,  and  platform IMU. 

The organization of the  chapter 1s as follows: Section 3.1 outlines  the  format  and 

goals of the  simulation  study.  Its two subsections  help  the  reader  understand  the 

1,ater results by detailing  the  simulation  parameters  used,  and  the  performance 

measures which will be employed,  respectively.  Typical FTS performance  when  failures 

are  not  simulated  can  be  found in  Section 3 . 2  along  with a description of the nominal 

FTS parameters  used  in  the  study. The next  section, 3 . 3 ,  discusses  performance  under 

singleton  and  simultaneous  multiple  bias  failures.  Bias  failure  performance  is  reported 

in this  section  for  both a "standard"  (flight  control  quality)  sensor  configuration,  and 

an RSDIMU configuration  (navigation & flight  control  quality  sensors).  Section 3.4 

shows how well the  FTS works  with  non-bias  type  failures.  Finally,  the  chapter  closes 
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with  Section 3.5 which  summarizes  the  results of the   chapter   and  gives an  overall 

evaluation of the  current  system. 

3.1 FTS Evaluation-Overview 

A simulation  study was performed  to  empirically  determine  the  capabilities of the 

analytically  derived  fault  tolerant  system,  developed  in  Chapter 2. The study  had 

several  goals - some of which  were  mentioned  in the  previous  section.  Here we would 

like  to  review  the  ground  rules  for  this  study,  discuss  the  simulation  and  filter 

parameters  used,  and  the  performance  measures  to  be  employed. 

The simulation  environment  used  to  test  the  developed FTS is provided  by NASA’s 

six degree of freedom  nonlinear  digital  simulation of the TSRV research  aircraft .  The 

original  program  (supplied by NASA.-LRC) was suitably modified to  include  realistic 

sensor  and  failure  models  (see [ 2 ] ) .  Our simulation  study  uses  this  program  in  the 

terminal  area - under MLS coverage  only.  Moreover,  the  fault  tolerant  estimates 

generated by the  no-fail  filter  are  used by a fully  automatic  landing  system - in a 

closed loop fashion - t o  land  the  aircraft  along a prescribed  path.  Therefore, our 

simulation  study is concerned with detecting  and  isolating  failures in sensors  and 

providing  fault  tolerant  aircraft  state  estimates  to  the  automatic  landing  system  in  the 

terminal  area. I t  is  assumed  that  the  reader  is  familiar  with  this  problem (from 

reading 113, [2], 141, [SI, or [si). 

The simulation  study was performed by: 

o implementing the  system  described  in  Chapter 2 - making little  or  no 
simplifying  assumptions. 
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o using  an  update  rate  for  al l   portions of the FTS  of 20 Hz (i.e. a sample  time 
of 0.05 seconds). 

o simulating  the  normal  operating  characteristics of the  sensors  (i.e.,   bias, 
noise,  scale  factor,  misalignment,  etc.) - while using a simple bias  plus  noise 
model in  designing  the FTS. 

o simulating  the many failure  modes  for  the  sensors  (i.e.,  bias  null,  hardover, 
ramp,  increased  noise,  etc.) - while using a simple  bias jump failure model 
in  designing  the FTS. 

o estimating  only  selective  normal  operating  biases - even  though  all  sensors 
have  some form of constant  bias  term  in  their  outputs. 

o simulating  failures  in  the  components of the RSDIMU (when  used)  are  not 
detected by the  FTS, nor  are  they  considered  in  this  study - instead  the 
FDI techniques  resident  in  the RSDIMU are  used  (see [23] for a description 
of these  techniques). 

These  rules  were  adopted  in  order  to  evaluate  the  robustness of the FTS under 

simple internal models. Simplifying assumptions  (even  straightforward  ones)  were  not 

made so that  assumptions  about  one mode of operation  (say with  bias  failures) would 

not  impact  performance  under  another  (for  example, with increased  noise  failures). In 

this way, the  robustness of the  original  method would be  examined ra ther   than   an  

unintended  specialized  variant of i t .  Moreover,  by  postponing  these  practical 

decisions  they  could  then  be made based  on a broad  experience  base. 

In addition  to  the  basic  rules given  above, the  particular  runs  chosen  to  be 

included  in  the  study  had  the following general  characteristics: 

o Multiple isolated  failures  were  simulated  in  each  run  to  save  on  computer 
resources,  and  to  see if detectability of the  remaining  sensors would be 
affected. 

o A bias  failure was simulated  for  every  sensor  at  several  points  in  the 
standard  flight  trajectory  (for  example,  along a perpendicular  path  as well 
a s  a tangential  path  relative  to  the  runway; or on a straight  and  level  path, 
as  well a s  a maneuvering  one). 
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o Failures  were  randomized  with  respect  to 

. time of failure 

. level of failure 

. sensor  replication 

o Each  run was made  in a Monte Carlo  fashion - in  that  a different  random 
seed was used  for  every  run  (therefore,  filter  initial  conditions,  bias  levels, 
noise  time  histories,  etc.  were  all  randomized). 

The  Monte Carlo  simulation  approach was used  to  more  faithfully  test  the FTS 

and  explore  the  strengths  and  shortcomings of i t .  I t  also  provides a good base of 

runs which can  be  incorporated with future  ones  to  obtain  average  performance 

measures,  and  probabilities. By simulating  failures  at  varlous  points  within  the  flight 

path,  we can  empirically  examine  the  effects of flight  path  on  failure  identifiability  and 

detectability. 

The next  subsection  defines  the  nominal  simulation  used  throughout  this  study. 

I t  also  displays  the  nominal  flight  path  along  with  other  important  flight  profiles. 

3.1.1 Simulation  Description 

The objective of this  sub-section is to  define  the  simulation  parameters  used  in 

the  study  and  to  describe  the  nominal  simulation  environment - as  it   effects  the FTS. 

The simulation  runs all start  slightly  before  the  point of transition  to MLS 

coverage  and  end  at  touchdown  on  the  runway. Sampling frequency  for  the  simulation 

is 20 Hz. Figures 5-9 show the  simulated  aircraft   state time  histories  for a typical 

simulation  run.  These  figures  are  intended  to  be  used  for  reference  purposes. In the 
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res t  of the  simulation  runs  to  be  presented,  these  time-histories will not  be  re- 

shown. They  may, in fact ,  be  slightly  different,  since  the  no-fail  filter  state  estimates 

are  used by the  automatic  guidance  and  control laws to  land  the  aircraft. In other 

words,  under  different  noise, wind, failure,  etc.  conditions,  the  corresponding  true 

variable  time-histories may differ  somewhat from the nominal. 

Figure 5 shows the A/C ground  track  and  altitude  profile. This figure  clearly 

shows the  sequencing of the  various  flight  segments  as  the A/C performs  its  automatic 

approach  and  landing. In addition,  the  direction of the  simulated  horizontal wind 

(165 degrees from north)  is  displayed. The magnitude of the  wind  was a constant 

30 knots  in  all  sample  runs  considered in this  study. The simulation  runs  all  start 

under VORTAC system  coverage  without  the FTS. At approximately 35 seconds, MLS 

coverage  begins  and  the FTS program  (no-fail  filter,  bank of detectors,  decision  logic, 

e tc . )  is initiated.  Figure 5 shows the  initial  ground  track  oriented  roughly 45O 

relative  to  the  runway. A banking  maneuver is executed (from 55-100 seconds) which 

brings  the  flight  track  perpendicular  to  the  runway. A second  bank  maneuver  occurs 

30-40 seconds  thereafter which aligns  the  flight  track with the  runway. This flight 

segment  runs  to  approxlmately 215 seconds. Glide slope  capture  occurs  at 

approximately 180 seconds. Between 255 seconds  and  touchdown  (approximately 275 

seconds),  decrab  and  flare  maneuvers  are  executed. Also, MLS elevatlon  measurements 

are  replaced by  altimeter  measurements  in  the FTS at   around 260 seconds. The flight 

path  can  be  summarized  by  the following  mapping (which will be  convenient  to  refer  to 

in  later  discussions): 
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o t ime - 35->55; A/C pa th  i s  ne i ther   perpendicular  

n o r   p o r o l l e l   t o  runway 

o t ime = 55->100. k 136->200; 

o t ime = 108->130; 

o t ime = 200”>touchdown; 

A/C i s  maneuvering 

A/C pa th   i s   perpendicu lar   to  runway 

A/C p a t h   i s   p a r a l l e l   t o  runway 

The altitude  profile  curve  shows  the  nearly  constant  sink  rate of approximately 3 

meters/s. 

The  maneuvers,  shown  in  the  ground  track of figure 5 can  be  seen  in  more  detail 

in  the  next  four  figures. The corresponding  attitude  and  body  attitude  rate  variations 

for this  typical  simulation  run  are  displayed in  figure 7 and 6, respectively. The 

following attr ibutes  are  evident in these  figures: 

Yaw angle  has  the  largest  amplitude  range,  and  the  lowest  frequency  content 
(i.e.  changes  occur  more  gradually  and  smoothly) 

Pitch  angle  has  the  smallest  amplitude  range - and is also  fairly  smooth, 
with  some regulation  evident  during  the  roll  angle  transient. 

The  roll  angle  profile  shows  the most variations. I t  also  contains  several 
periods  where  the  roll  angle is very  nearly  zero. 

All th ree  body att i tude  rates  are  plotted using the same  scale. 

Roll rate  has  the  largest   and  sharpest   transients,   but  the  duration of each 
is typically  confined  to a 5-20 second  period. 

Yaw ra te ,  on the  other  hand,  is  smooth,  but its duration a t  significant  levels 
is much  longer (30-70 seconds). 
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The implications of these  variations  are  as follows: 

o The effects of these  att i tude  rate  variations  on  the FTS will be  felt  as 
unmodeled  errors  due  to  misalignment,  and  scale  factor  errors - each of 
which is a function of the  signal  level. 

o Both attitude  and  attitude  rate  profiles  clearly show periods of large  and 
small  signal  levels. The detectability of failures of varying  types  and  levels 
during  these  periods  is  an  important  issue. 

Typical  body  acceleration  profiles  experienced  by  the  aircraft  are  found  in 

figure 8. All three  trajectories  are  plotted on the  same  relative  scale - s o  that  they 

can  be  compared.  Notice,  however,  that  the  vertical  acceleration is biased by the 

gravitational  acceleration.  Basically,  these  curves  show  the  aircraft  decelerating  as  it 

nears  touchdown. The affects of cross-axis  coupling  on  the  lateral  airframe  dynamics 

can  be  seen  in  the  lateral  acceleration  curve.  Since  body  accelerometer  measurements 

are  inputs  to  the FTS, and  since  they  include  both  scale  factor  and  mounting 

misalignment errors,  the  absolute  level of each of these  curves  should  be  kept in mind 

when interpreting  the  later  results.  

Since  the FTS operates  in a runway  based  coordinate  frame,  the  mapping  between 

body  quantities  and  runway  quantities is important  since  this  transformation  effects 

failure  observability.  Figure 9 shows the A/C velocity  components  in  the  runway 

frame. I t  can  also  be viewed as  the  transformation of the body  accelerations 

(properly  integrated)  into  the  runway  frame. Note in particular,  the  flight  segments 

where  the  forward  body  velocity is either  all  in  the x or y runway  direction. During 

these  periods,  not  only  the  signal,  but  also much of the modeling errors  will be 

polarized  in  these  directions. 
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Table 1 shows the  sensor  model parameter  values  used in the  simulation. A dual, 

redundant,  sensor  configuration  is  used. For each  sensor  type,  the  standard  deviation 

of the  sensor  measurement  noise,  normal  operating  bias  and  scale  factor  error is 

given,  along  with the  associated  stop limits. The units  for  the  parameter  values  are 

given  in the  second  column - except  for  scale  factor which is expressed  as a percent,  

and IAS measurement  noise,  which is multiplicative,  and  also  expressed  as a percent.  

As discussed  earlier, MLS measurement  noises  are  time-correlated  with a steady-state 

rms  value  specified  in  Table 1. Furthermore,  body-mounted  instruments  are 

misaligned  with  respect  to  the  body  axis  through a random  transformation. The 

standard  deviation of the  random  misalignment is 0.4' for rate  gyros  and 0.36' for  

accelerometers. The normal  sensor model parameters  values  for  the RSDIMU, when it  1s 

used, is shown in Table 2. 

3.1.2 Performance  Measures 

The performance of the FINDS program  has  been  determined by making  various 

runs  under  the following sensor  failure  conditions,  listed in  approximate  order of 

increasing  deviation from the  underlying  the FTS design  assumptions: 

o singleton  blas  failures 

o multiple  blas  failures 

o hardover  failures 

o null  failures 

o ramp  failures 

o increased  scale  factor  failures 

o increased  noise  failures 
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TABLE 1. NOMINAL SENSOR MODEL PARAMETERS 

MISALIGNMENT  SYMMETRIC 
ANGLE  OUTPUT L I N T S  

NOISE BIAS 
LEV  EL LEV  EL 

SEflSOR 
TYPE 

SCALE 
FACTOR UNITS 

d s / s  . 40° 4.4,4.9,19.6 .098 .098 .25% 

.36 0 1 r)(l .02 2.85-5 . O l X  

Azrn,El .33 .03 N/A* 

OD Rng c 

I A S  

3. n 4 N/A N/A N / A  

2%(4.5)*** 1.0 m/ s N/A N/A 2!75/54** 

.23 .08 N/A N /A 8c1,80,600 

RP, ,305  .3n5 N/A rn 

* - n o t   a p p l i e d  
* * - t w o  sided  (asymmetric) s top  l i m i t s  
*** - percent   (absolute)  



TABLE 2. NOMINAL  RSDIMU  SENSOR MODEL  PARAMETERS 

RATE GYROS LINEAR ACCELEROKETERS 
(deg/Hr) ( g ' s )  

Noise 0.125 1.25 E-5 

Bias 0.915 1.0 E-4 

Scale Factor (ppm) 75 75 

Mi sal i gnmen t (deg ) 3.333  E-3 3.333  E-3 

6-sensitive  drift (deg/Hr) 0.015 0.015 
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In all of the  failure  conditions  above,  except  for  the  null,  hardover.  and  ramp 

cases,   i t  will be  convenient to  define a failure  level  with  respect  to  the  underlying 

normal  operating error level. For instance, if the  standard  deviation of the  normal 

operating  bias  for a given  sensor  is u, then a 50 bias  failure  for  that  sensor will 

signify  that  the  failure  level will come  from a distribution with a standard  deviation of 

50.  Similarly, the  u in a 100 increased  noise  failure will be  the  standard  deviation of 

the  measurement  noise  associated with that   sensor .  A more  detailed  description of the 

sensor  failure models can  be  found  in [ l ]  and [ Z ] .  

Although repetitive  runs  for a given sensor  failure  type  under  varying  random 

conditions  have  been  made,  the  collected  data was not  sufficient  to  compute 

experimental  false  alarm  and  probability of detection  figures. On the  other  hand,  the 

repetitive  runs,  where  available,  have  been  used in obtaining  an  average  ”time-to- 

detect”  and  “time-to-heal”  figure. 

The primary way of evaluating  performance will be to  examine the  actual time 

histories of the  no-fail  filter  state  estimation  errors  and  covariances. The 

information  contamed  in  these  plots, much of which would be  lost  in  formmg  ensemble 

statist ics,  1s partikularly  useful  in  providing  insight  into  the  operation of the FTS. In 

particular: 

o The transient  effects of the  failures  can  be  seen. 

o The effects of using  biased  measurements are  evident 

o The interaction of the  bias  filter  and  choice of biases  to  be  identified  can 
be viewed 

o The effects of the  healer  and  re-configuration logic can  be  gauged 
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o How the flight path  effects  the  no-fail  filter  and  the  propagation of failures 
can  also  be  seen. 

Time histories will be  presented  as  an  estimation  error  profile,  with  the  no-fail 

filter 's a posteriori  (e.g.  after  the  measurement  update)  covariance  envelope. 

When viewing these  error  profiles  note  that  although  absolute  performance of the  

no-fail  filter is important,  the  filter  serves a dual  purpose. On one  hand,  it 's  function 

is  to  provide  accurate  estimates  for  the A/C's current  state.  While on the  other  hand, 

i t  must  perform  data  fusion  in  such a way tha t  all sensors play a role in the 

estimation of those  same A/C states.  This last  function is critical if failures  in 

individual  sensors  are  to  be  detectable.  Since,  at  times,  these two functions  are 

clearly  in  conflict,  no-fail  filter  parameters  were  chosen  to  satisfy  both  goals. 

3.2 Performance  -with No Failures 

In this  section,  the  performance of the FTS no-fail  filter  described  in  Section 2.2 

will be  discussed  using  the  results  obtained on the  six-degree-of-freedom  nonlinear 

simulation  described  in  Section 3.1. The inherent modelling e r ror  in the  no-fail  filter, 

arising from the  assumptions made  in the  design  were  discussed  in  Section 3.1.1. 

Before we begin,  however, we  will need  to  specify  the  specific  parameters  used  in  the 

FTS modules. 

Initial  errors  for  the  state  and  normal  operating  bias  estimates  are  randomized. 

Their  one sigma levels a t  FTS star t -up time are  given  in  Table 3. This table  also  gives 

the  standard  deviation of the  initial  uncertainty  for  these  variables.  Furthermore, 
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accelerometer  and  rate  gyro  biases  are  normally  estimated by the  no-fail  filter. 

Normal accelerometer  bias  levels  were  large  enough  that  their  compensation was 

necessary,  however,  normal  rate  gyro  biases  are  very small.  Rate  gyro  biases  were 

estimated  to  help  eliminate  false  alarms  associated  with  scale  factor  and  misalignment 

modeling errors .  

Process  and  measurement  noise  statistics  used  by  the  no-fail  filter  are  given  in 

Table 4. Notice that  the  noise  levels  assumed by the  f i l ter   are given  in a per 

replication  manner - to  reflect  the  fact  that  the  actual  process  and  measurement 

noise  statistics  used  depend  on  the  replications of the  corresponding  sensors. 

Further   note   that   the  wind process  noise  doesn't  relate  to a physical  sensor  and 

therefore is replication  independent. 

FTS detector  parameters  are  summarized  in  Tables 5 and 6. Table 5 gives the a 

priori  probability of failure,  detector  estimation window length,  and  standard 

deviations of the  estimation  information  used  for  detector  resetting. Table 6 shows 

the  bias  and  failure  levels  used  in  the  healer  module. The healer window length  used 

was 3 seconds  in all runs. 

Figure 10 shows the  no-fail  filter  position  estimation  error time histories  for a 

typical  run.  Each  plot is made up of two par ts :   an  error  time history - the  solid  line; 

and  an a posteriori  covariance  envelope - the  two symmetrical  dashed  lines. Also, 

keep in mind that  the  covariance  envelope  represents  the a posteriori  covariance  (e.g. 

after  processing  the  measurements),  and  therefore  does  reflect  the  level  used  in 

forming the Kalman gains or  the  innovations  covariance  used by the  detectors.  The 
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TABLE 3. NO-FAIL  FILTER  STATE  INITIAL  CONDITIONS 
""""""""""""""- 
V a r i a b l e   E s t .   E r r o r   U n c e r t a i n t y  U n i t s  

(S.D.)  (S.D. 1 """""___""""~"- 
S t a t e s :  
x - rw 1 . 5 0 0 0 E + 0  1 
y-rw 1 . s 0 0 0 E + 0  i 
z - r w  5 . 0 0 8 0 E + 0 0  
x-do t-rw 1 . 5 0 8 0 E + 0 0  
y-d-3 t-rw 1 . 5 0 0 0 E + Q 0  
z -do  t-rw 1 . SQBQE+Q0 
phi 1 .0000E-01  
t h e t a  1 .Q013OE-0 1 
PSI 2 . 0 0 0 0 E - 0  1 
x-w i nd-rw 5. QOB0E-0 1 
y-w i n d-rw 5.00UOE-0 1 

A v e .  B i a s e s :  
x - a o c e l  1 . 0000E-0  1 
y - a o c e l   1 . 0 0 0 0 E - 0 1  
z - a , > c e l  1 .0080E-Q 1 
P - g y r o   2 . 8 0 0 0 E - 0 5  
Q - a y r o   2 . 8 0 8 0 E - 0 5  
R-gyro 2. SOOOE-05 

4 . 0 0 0 Q E + 0  1 rn 
4 . 0 0 0 0 E + 0  1 m 
3 . 0 0 0 0 E + 0  1 m 
4 . 0 0 0 0 E + 0 0  ads 
4 . 0 0 0 0 E + 0 0  m/s 
1 .250OE+0Q m/s 
5 .000QE-0  1 d e g  
5 . 0 0 0 0 E - 0  1 d e g  
1 . 5 0 0 Q E + 0 0   d e n  
7 .500OE-0 1 m/s 
7 . 5 8 0 0 E - 0  1 d s  

3.0480E-0 1 &S/S 
3 . 0 4 S 0 E - 0  1 m/s/s 
3 .04SQE-0  1 m/s/s 
2 . 5 6 0 0 E - 0  1 d e g / s  
2 .560BE-01 d e g / s  
2 . 5 6 0 0 E - 0 1  d e g / s  

"" 

TABLE 4 .  NO-FAIL  FILTER  PROCESS AND MEASUREMENT  NOISE  LEVELS 
""""""""" """ 

V a r i a b l e   N o i s e  S.D. R e p l i c a t i o n s   U n i t s  
P e r  Rep1 . Used  

P r o c e s s  Noises: 
x - a c c e l   9 . 8 0 8 6 E - 0 2  1 m / s / s  
y - a e c e l   9 . 8 0 6 6 E - 0 2  1 d s / s  
z - a o c e  1 9 . S 0 6 6 E - 0 2  1 m/s/s 
P - g y r o   8 . 9 4 0 0 E - 0 2  1 d e g / s  
Q-gyro S.94BOE-02  1   deg/s  
R-gyro 8 .94B0E-02  1 d e g / s  
x - w i n d - r w   0 . 0 0 8 0 E + Q 0  N/A m/s 
y-wi nd-rw  0 .00BOE+80 N/A m / s  

Measuremen t Noises : 
31LS az im 6.00B0E-02 2 
MLS e l  6 . 0 0 8 0 E - 0 2  2 
MLS rng 6 . 0 0 9 Q E  + 00 2 
I AS 1 . 4 9 1 9 E + 0 0  2 
iMU phi  2.5 180E-0  1 2 
IMU t h e t a  2.5 ll3QE-0 1 - 7 
I IU  p s i  2.5 180E-0 1 2 
R a d a r   a 1  t 3 . 0 4 3 Q E - 0  1 0 
""""""""" 

" 
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TABLE 5.  DETECTOR  RESET  PARAMETERS 

D e t s c t o r  W i n d o w   L e n g t h  = 1 . 0 0 0 0 0   S e c o n d s  

S e n s o r   A p r i o r i   E s t .  Window E s t i m a t i o n  U n i t s  
T y p e   P r o b a b i  1 i t y  ( s e c )  I n f o r m a t i o n  

(S.D. 1 

S i n i 3 u l a r   F a i l u r e s :  
x - a s c e l   4 . 6 0 0 0 E - 0 9  3.00000 9 . 2 9 0 3 E - 0 3  ~ S / S  
y - a s c e l  
z - a s c e  1 
P - g y r o  
Q - g y r o  
R-gyro  

MLS e l  
M L S  a z i m  

MLS r n g  
I AS 
IMU p h i  
IMU t h e t a  
IMU p s i  
R a d a r  a l t  

4 . 6 0 0 0 E - 0 9  
4 . 6 0 8 0 E - 0 9  
4 . 6 0 Q 0 E - 0 9  
4 . 6 0 8 0 E - 0 9  
4.60130E- 1 0  
3 . 5 0 0 0 E - 0 9  
3 . 5 0 0 0 E - 0 9  
3 . 5 0 9 0 E - 0 9  
3 .1580E-OS 
2 . 2 5 0 0 E - 0 8  
2.25BOE-08 

3. S08OE- 10 
2 . 2 5 8 0 E - 0 9  

3.00000 9 . 2 9 0 3 E - 0 3  
3.00000 9 . 2 9 0 3 E - 0 3  
3.00000 0 . 0 0 0 Q E + 0 0  
3.00000 0 . 0 0 0 0 E + 0 0  
3.80000 0 . 0 0 0 0 E + 0 0  
1 .00000 0 . 0 0 0 0 E + 0 0  
1 .00000 0 . 0 0 0 0 E + 0 0  
1 .00000 0 . 0 0 0 Q E + 0 0  
1 .00000 @ . 0 0 0 0 E + 0 0  
1 . QQQQQ 0 . 0 0 0 0 E + 0 0  
1 .00000 0 . 0 8 0 Q E + 0 0  
1 . 00000 0 . 0 0 0 0 E + 0 0  
1 .00000 0 . 0 0 0 0 E + 0 0  

S i m u l t a n e o u s   M u l t i p l e   F a i l u r e s :  
IIlLS a z i m  1 . 2 2 5 0 E - 1 4  
YLS e l  1 . ZZSQE- 1 4  
!1LS r n g   1 . 2 2 5 0 E - 1 4  ~"~""""""_""""""""""_ 

TABLE 6. DETECTOR  HEALER  PARAMETERS 

H e a l e r  Window L e n g t h  = 3.00000 S e c l n d s  

S e n s o r   B i a s  Est  F a i l u r e  Es t  Units 
TYP. T h r e s o   I d   T h r e s h 0  1 , c l  

x - a o c e l  
y-a , .cel  

P - g y r o  
z - a c c e l  

Q - g y r o  
R-gyro  
MLS a z  im 
MLS e 1 
MLS r n g  
I AS 
IMU p h i  
I>lU t h e t a  
I!lU p s i  
R a d a r   a 1  t 

2.00f30E-01 5 . 0 0 0 Q E - 0 1  
2 . 0 0 8 0 E - 0  1 5 . 0 0 0 0 E - 0  1 
2 . 0 0 0 0 E - 0  1 5 . 0 0 0 0 E - 0  1 
1 . 2 0 8 0 E - 0 3  1 . 2 0 0 0 E - 0 2  
1 . 2 0 8 0 E - 0 3  1 . 2 0 0 0 E - 0 2  
1 .2000E-@3 1 .2000E-02 
6 . 0 0 8 O E - 0 2  1 . SOWE-0  1 
Cj.0080E-02 1 .580OE-0 1 
1 .2080E+O 1 2 . 0 0 0 0 E + Q  1 
1 . 2 0 8 0 E + 0 0  2 . 5 0 0 O E + 0 0  
3. 0006~-o i 3 .  O O Q Q E - ~  1 
2.0000E-0 1 5. QQQQE-0 1 
2.0000E-E) 1 5. 000QE-0 1 
6. 1000E-0 1 1 .50QOE +0Q 
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FIG. 10. POSITION ESTIMATION ERROR - NO-FAILURES 
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FIG. 11. VELOCITY  ESTIMATION  ERROR - NO-FAILURES 
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FIG. 12. ATTITUDE  ESTIMATION  ERROR - NO-FAILURES 
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FIG. 13. HORIZONTAL WIND ESTIMATION  ERROR - NO-FAILURES 
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FIG. 14. ACCELEROMETER BIAS ESTIMATION ERROR - NO-FAILURES 
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FIG. 15. RATE GYRO BIAS ESTIMATION ERROR - NO-FAILURES 
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FIG. 16. TRUE A/C TRACK ERRORS - NO-FAILURES 
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first attr ibute  one  notices is that  position  estimation  error  profiles  are  somewhat 

biased. This is attributable  to  the  uncompensated  normal  operating  biases of t he  

measurements.  Examination of the  EKF gain  (at  several  points  in  the  run)  for rx and r 
Y 

show tha t  MLS azimuth  and  range  measurements  are  used  heavily  in  forming  these 

estimates.  Whereas, MLS elevation  and  range  are  primarily  used  for  estimating r L .  

Given the level of uncompensated  bias  in MLS measurements  (found  in  Table 1) and  the 

range  as  a function of time,  these  biases  can  be  almost  totally  accounted  for. In 

general: 

o The bias  levels  shift  in  response  to  changes  in  the  flight  path - since  the 
EKF gain is redistributed  for  the new flight path.  

o The quantity SQRT[ 1?,12 + ] and I?,[ diminish a s  touchdown is 

approached  (where ?, = rm - r m  Le.  estimation  error). A 

o The a posteriori  covariance is small  due  to  the low measurement  noise 
assumed  for MLS measurements. 

o Vertical  estimation  error  characteristically  is  not  effected by changes  in  the 
flight  path. Its error  diminishes  primarily  due  to  the  diminishing  effect of 
the  unidentified MLS elevation  normal  operating  bias. 

No-fail filter  velocity  estimation  error  profiles  are  shown  in  Figure 11 for  the 

same  sample  run. Keep in mind that  these  variables  are  expressed  in  the  runway 

- not   the body  frame of reference. The error  levels  for  all  the  profiles  are 

reasonable  and  both  lateral  and  vertical  velocity  errors  converge  to  within  the  one- 

sigma covariance  envelopes. The nearly  linear  convergence of the  vertical  velocity 

e r ror  is again  due  to  the diminishing  impact of the  unidentified MLS elevation  sensor’s 

normal  operating  bias. The convergence  in  the x and y directions is characteristically 

flight  path  dependent. The lowest errors  tend  to  occur  when  the  signal  level of the  

variable is close  to  zero  (see  Figure 9). Therefore,  periods  when  the  aircraft is 
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perpendicular  to  the  runway  (the A/C’s velocity is in the y runway  direction), x 

estimation  error will typically  be low. 

The  approximately 1 m / s  bias’ visible  in the x velocity  error  profile  after 

150 seconds  is  due  principally  to  the  poor wind estimation  performance. Remember, a 

30 knot  horizontal wind is present  in  all our runs. Lower  wind levels  scaled  this  bias 

e r ror  downward. Note tha t  a .5 m / s  spike  occurs  around 255 seconds  in  the  vertical 

velocity  error  curve. This is  due  to  the  reconfiguration  logic. A t  this  point  in  the 

trajectory,  MLS elevation  measurements  are  replaced by radar  altimeter  measurements. 

The important  point  is  to  notice  the  selectivity of the  reset  - i t  only  effects  vertical 

velocity  and  vertical  accelerometer  bias  errors. This is  an  important  feature of the 

developed FTS. 

Attitude  estimation  errors  are  shown in  Figure 12. An rms error  value of 

0.05°-0.10 in  roll,  pitch,  and yaw  was typical of all the  runs.  These error  levels 

correspond  roughly  to  the  unidentified  normal  operating  bias  values in the  IMU 

measurements.  Increases  in  the  attitude  estimation  errors  during  banking  maneuvers 

is  due  to  the  approximations  resulting from using  Euler  integration  for  the  kinematic 

equations  in  the  single  stage  prediction  part of the  no-fail  filter,  and  the  fact  that 

the  filter is running  at  only a 20 Hz sample rate  (typical  update  rates in conventional 

navigators  vary  between 60 and 70 Hz). 

5The level of this  bias is actually larger  than l e v e l s  normally  observed. A more typical 
level would be approximately 0.3 m/s. 
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In this  run,  there  was a false  alarm  in  the roll ra te   gyro   a t  251 seconds  which 

was correctly  declared  "recovered"  by  the  healing  tests  at 258.9 seconds. The 

favorable  impact of the  healing  decision  can  be  seen  in  the  roll  attitude  estimation 

e r ror  time  history. 

Horizontal wind estimation  error  time  histories  are  given in  Figure 13. Although 

some degradation  in  the  horizontal wind estimates  are t o  be  expected  due  to  the 

assumptions of zero  angle of attack  and  side  slip  in  the  indicated  airspeed 

measurement  model,  the  steady-state  estimation  errors  in  these  variables  are  largely 

due  to  the wind model used  in  the  design of the  filter.  Specifically,  the  unknown 

constant  random  variable model for  the  horizontal  winds  causes  the  filter  to  become 

oblivious to  the  indicated  airspeed  measurements  after  the first maneuver. We believe 

that  gain limiting  on the  horizontal winds  would eliminate  this  behavior. 

Error time  histories for the  accelerometer  and  rate  gyro  bias  estimates  are 

shown  in  Figures 14 and 15. Note the  initial  bias  errors  visible  in  the  error  trace 

before  the FTS is  initiated  (at  approximately 35 seconds). The good  convergence 

characteristics  for  the  accelerometer  bias  estimates  were  typical of other   runs with 

different  bias  levels.  Identification of accelerometer  bias  levels  made a significant 

contribution  to  the  improvement of position  and  velocity  estimates. On the  other  hand, 

rate  gyro  biases  are  identified  in  order  to  introduce  uncertainty  into  the  kinematic 

models, and  to  help  compensate  for  transient modeling errors  due  to  scale  factor  and 

misalignment e r rors  - although  the  actual  bias  levels  in  the  rate gyro measurements 

were  too  small  to  be of any  significance. 
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Figure 16 shows  various A/C track  error  profiles  for  this  run.  These  error 

levels  were  typical  for  the  no-fail  case.  Although  these  curves  are  on  indication of 

overall  system  performance,  the  reader  should  remember  that  they  include  the 

idiosyncrasies of the  automatic  control law. That  is  to  say,  the  control laws a re  

parameterized in a particular way and  are   therefore  more  sensitive to  particular 

parameter  variations. 

3.3 Performance with Bias Failures 

This section  describes  the  observed  performance of the FTS under  simulated  bias 

failures.  Since  the FTS was  designed  with the implicit  assumption  that  failures would 

appear  as  bias jumps  in a sensor 's   outputs,  we should  expect  the  best  performance 

here.  A s  discussed  in  Section 3.1.2, the  format of this  section will be to  discuss  the 

results from the  context of individual  simulation  runs,  in  order  to  give  the  reader a 

deeper  insight  into how the  method operates.  Observed FTS bias  failure  detection  and 

isolation  performance will be  described  using  the  standard  sensor  configuration,  and 

an  alternative  configuration employing an  RSDIMU in  the  first two subsections, 

respectively. The last  subsection  describes  performance when multiple (MLS) failures 

occur  simultaneously  in  time. 

3.3.1 Singleton  Bias  Failures - Standard  Sensor  Configuration 

In this  section  bias  failure  performance will be  discussed  for  the  standard  sensor 

configuration. In particular,  three  sample  runs will be  utilized.  These runs were 

chosen  to  be  representative,  and  in  addition,  to  highlight  strong,  as well as  weak 

points in the  current  implementation. Table 7 describes  the  simulated  failure 

conditions  for  each of these  runs  (where  each  run is identified  mnemonically). The 
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names  chosen are BF-1, BF-2, and BF-3, where BF stands  for  bias  failure.   Further 

not ice   in   the  table   that  the first run ,  BF-1, has  a  single  sensor,  MLS elevation,  which 

fails  at  time  80.6  seconds,  with  a  failure  magnitude of 0.24 degrees  ( this  represents  an 

8 sigma  failure  level).  In  the  majority of the  runs  used  in   this   chapter ,   three or more 

failures  are  simulated  in  a  single  sample  run. The  implications of t h i s   a r e   t ha t  it will 

save CPU costs,  however,  observability  and  time  to  detect of the  remaining  sensors 

may be  affected. 

We will now discuss each of these  runs  in  detail ,  beginning  with  run BF-1. 

Generally,  only  error  profiles,  which  differ  from  those of the  previous  section, will be 

shown.  In  this  sample  run,  no  false  alarms  were  recorded,  and  no  false  healings 

occurred.  The  bias  failure  was  simulated  to  occur  at  80.6  seconds,  and it was 

detected  at   81.   seconds  yielding  a  t ime  to  detect  of .4 seconds.  Turning  our  attention 

now to  Figure 17 and 18, we see  that   - the  effects of the  elevation  failure  are  negligible 

on  x  and y posit ion  and  velocity  estimation  errors.   That is to   say   tha t   the   t ime 

histories  are  very  similar  to  those  one  would  have  seen  had  no  failure  occurred. 

However, z position  and  velocity  errors  (the  bottom  curves),  show  pronounced 

transient  effects  at   the  t ime of failure  onset.  Although  the  failure  is  detected  (and  the 

system is reconfigured)  quickly, it takes  a  period of approximately 20 seconds  to 

completely  remove  the  effects of this  failure  from  the  state  estimates.  On the  other  

hand,  the  disruptive  effects  are  localized  and  are  at  a  level  similar  to  that  which 

occurred  at   init ialization. The r a t e  of convergence for these  error   curves  is 

noticeably  slower  than  observed  at   start-up. This is due  to  the  higher  effective 

measurement  noise on MLS elevation  measurements  assumed  by  the  no-fail  filter  after 

system  reconfiguration. 
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TABLE 7. DESCRIPTION  OF  BIAS  FAILURE  RUNS - STANDARD SENSOR  CONFIGURATION 

RUfl I/D 

BF-3. 

BF-2 

BF-2 

BF-2 

BF-3 

BF-3 

BF-3 

SENSOR 
FAILED 

El-2 

P-1  

R- 1 

e - 1  

.4zm- 1 

El -1 

FAILIJRE 
MAGNITSIDE 

. 2n0( 8u) 

.1 degrees/s 

.1 degrees/s 

.8 degrees 

.3O( 1 0 4  

.3O( 1W) 

.8O( 19u) 

FAILURE 
ONSET TIME 
(seconds) 

115.9 

66. Q 

223.65 

m. 65 

221.9 

66.65 
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FIG. 21. ATTITUDE  ESTIMATION  ERROR - BIAS FAILURE  CASE BF-2  
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The next  sample  run  to  consider is run BF-2. Table 7 shows  that  roll  rate, yaw 

rate   and IMU theta  failures  are  all  simulated  in  this  run.  These  sensors  all  affect  the 

attitude  determination of the  aircraft,  and  they  are  coupled  through  the  kinematic 

equations of motion.  Therefore,  in  this  run, we will analyze how well the  FTS system 

can  discern  input  sensor from  measurement  sensor  failures. 

The failure  detection  performance in this  case was quite  good. All failures  were 

correctly  identified  and  there  were  no  false  alarms o r  false  healings  during  this  run. 

The time  to  detect  for  roll  rate  gyro was 2.75 seconds,  and yaw rate  gyro was 

4.05 seconds. The detection  time  for  theta was 0.3 seconds. This is a typical 

characterist ic of input  versus  measurement  sensor  failures. In all of the  runs 

measurement  sensor  failures  were  detected  at  least  an  order  magnitude  faster  than 

input  sensor  failures. This is due  primarily  to  the  fact  that  the  input  failures,  in 

order  to  be  identified by the  detectors ,  must  propagate  through  the  no-fail  filter 

dynamics  to  put  their  signature  on  the  residuals. 

As mentioned  previously,  these  sensors  are  used  primarily  to  determine  the A/C’s 

att i tude,   and  therefore only  degradation  to  the  no-fail  filter’s  attitude  estimates 

should  be  observed. In fact,  examination of the  position  and  velocity  estimation  error 

curves shown  in  Figures 19 and 20  show that   the  FTS has  this  desirable  property. 

Notice that  the  position  and  velocity  estimation  errors  all  lie  within  bounds which a re  

typical of a no-failure  case.  Furthermore,  disruptions  due  to  resets  after  failures  are 

6 

‘Since the attitude  estimates  are  used  to  resolve  the  accelerometer  measurements,  failures 
w i l l  eventually be observed in the  other  states - but to l e s s  an  extent. 
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not  felt  by  these  state  estimates. This  is an  important  attribute of t he  developed FTS 

- without  it   resets  due  to  correct  failure  detections  (as well as  false  alarms) would 

drastically  reduce  the  estimation  error  performance of the  system  as  discussed  in 

Section  2.6. 

Viewing the  attitude  estimation  error  curve,  Figure  21,  the  effects  are  seen  to 

be  pronounced  here.  Phi  estimation  error,  the  top  diagram,  shows a ramp  occurring 

between  the time of the  roll  rate  gyro  failure  and  its  detection. A t  118.65  seconds 

when the roll rate  gyro  bias  failure is detected  and  the  standby  roll  rate  gyro 

replaces  the failed sensor,  a reset  occurs. A similar  effect is seen  in  the  psi  error 

when the yaw rate  gyro  fails. Notice the  reset  in phi  has  no  effect  on  theta  and  psi 

errors .  In this  portion of the  run,  phi 1s less  coupled  to  theta  and  psi - and  the 

reset  logic accounts  for  this  fact.  For  example,  the yaw rate  gyro  failure  occurs 

during a banking  maneuver,  when  couplings  are  stronger,  and its reset  effects  theta 

estimation  error.  Moreover,  notice  that  after  both of the  rate  gyro  resets,   the 

estimation  errors  become  biased. This  seems to  be a fairly  typical  phenomenon  after 

an  input  sensor  failure. We feel  this  is  due  to  the  fact  that  the  input  sensor  bias 

estimates  were  reset in a rather  hard  fashion. These resets  can  be  seen  more  clearly 

in  Figure  22.  Because  the  bias  estimation  error  uncertainty  on  rate  gyros is. reset  so 

hard,   the  no-fail  filter  primarily uses the raw IMU measurements  to  get  an  estimate 

for  the  attitudes.  Since  these  measurements  are  biased, a step  in  the  estimation 

error  curves is observed. The effects of the  M U  theta  failure  on  the  estimation  error 

curves  cannot  be  seen. This is  due simply to  the  fact   that   the  theta  failure was 

detected  and  isolated  quickly,  in 0.3 seconds.  Therefore,  it simply wasn't  present  for a 

long  enough  period  to  affect  the  filter  estimates. 
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TABLE 8. SUMMARY OF AVERAGE BIAS  FAILURE  PERFORMANCE - STANDARD 
CONFIGURATION 

SENSORS 

Input  Sensors 

P 

Q 
R 

Measurement Sensors 

Azm 

El 

Rng 

IAS 

0 
0 

v 

RA 

AVERAGE TIME TO NUMBER OF 
DETECT (Seconds) SIFN!LATED  FAILURES 

4.65 3 

14.65 3 

FI.D.* 3 

13.32 

8.12 

6.1 

0.9 

9.15 

0.08 

1.57 

0.57 

0.43 

0.8 

9.3 

NUMBER OF MISSED 
DETECTIONS 

1 

2 

3 

1 

1 

I )  

* Not Detected 
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The third  and  final  sample  run,  to  be  discussed,  is  called BF-3 in  Table 7. I t  

consists of three  measurement  failures. They include two MLS failures of azimuth  and 

elevation,  and  also a psi  attitude  failure  in  the IMU. A s  we found  out  in  the  last 

example,  the time to  detect   is  much  quicker  for  sensors which a re   t rea ted   as  

measurements  into  the  no-fail  filter.  Detection  times  for  this run were  0.9,  0.15,  and 

0.35 seconds  for MLS azimuth,  elevation  and IMU psi,  respectively.  Because  the 

detection  times  are so quick  the  estimation  error  profiles  are  not much different from 

those  already  seen - so they will not  be  presented.  There  were,  however, two false 

alarms  and two correct  healings  which  occurred  during  this  run. The affected  sensors 

were the  roll  rate  gyro, which  was incorrectly  detected  as  failed  at time  248.9  seconds 

and  then  healed  at  251.9  seconds',  and  the  pitch  rate gyro which  failed a t  253.65 

seconds. The primary  reason  for  these  false  alarms is tha t  when the IMU psi  failure  is 

detected  early in the  run  (at  67  seconds)  an  entire IMU is  removed  from the 

measurement  set of the  filter. This forces  the  no-fail  filter  to trust the  rate  gyros 

more,  thereby  increasing  the  effects of integration  errors.  

Up to  this  point  details  were  primarily  about  individual  sample  time  histories, 

and  particular  sequences of failures in order  to  understand how the  fault  tolerant 

system  works.  Here we present a summary of the  average  failure  detection 

performance  observed  over  all  the  runs. Table 8 describes  the  average  performance 

by presenting  the  average  time-to-detect  for  each  sensor  type. Also included  in  the 

table  is  the  total  number of simulated  failures  and  number of missed detections by 

'This  is the  fastest that healing i s  allowed  to  occur  due  to  the  assumptions  made in the 
healer logic. 
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sensor  type. The average  time-to-heal is not shown in the  table  because  i t  was 

approximately 3 seconds  for  all  sensors. The runs  which  comprise  the  table  have 

random  failure  levels of 3a, 50, 80, loa,  or 120. The reader  should  note  that   the  total  

number of runs  represented  here is quite  small.  Furthermore,  since  the  average  time- 

to-detect  figure  shown is the  average of from one  to  four  samples  (columns  2-3),  one 

shouldn't  place much  weight  on the  actual  numbers,  but  only  look  at  them  relative  to 

one  another. 

Summarizing  Table 8 we see  that  

o Input  sensors  take  considerably  longer  to  detect  than  do  sensors  treated  as 
measurements  to  the  no-fail  filter. 

o Input  sensors  are  harder  to  distinguish  than  measurement  sensors - the  
number of missed  detections is noticeably  higher. 

o Although  not  explicitly  shown  in  the  table,  detection times for  input  sensors 
a re  much  more sensitive  to  the  absolute  level of the  failure  simulated. 

o Vertical  accelerometer  failures  were  not  detected  for  3a,5o,8a,and 100 failure 
levels.' Two factors  contributed  to  this  situation: 

. The signal  level  on  the  vertical  accelerometer  was Ig.  

. The normal  operating  bias  filter  was  able  to  monotonically  decrease  the 
impact  on  the  failure of the  system,  by slowly estimating i t  out .  

o MLS azimuth  takes  considerably  longer  to  detect  relative  to  other MLS 
sensors. 

o IAS is  the  slowest  to  detect of all  measurement  sensors. 

o Of the  IMU sensors, yaw failures  are  the most  difficult to   detect .  

'However. nul I and  hardover  fai lures  were  detected. 
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Some general  comments  about  particular  problems  that  were  encountered in 

running  this  matrix of cases seem appropriate  at  this  point. Typically a missed 

detection of an  accelerometer  sensor  failure  induced  an MLS false  alarm. Also, for  roll 

rate  gyros,  occasionally  an IMU false  alarm was observed,  rather  than a correct 

detection of the  corresponding  input  sensor. In these  cases - where  the FTS was 

unable  to  distinguish  dynamically  related  sensors - examination of the  a-posteriori  

probability of failure  obtained  from  the  decision  logic showed nearly  equal  probability 

of failure  for  the  failed  sensor  and  the  dynamically  related  one.  This  indicates  that 

this  behavior  can  be  improved  by: 

o Adding heuristics  to  the  decision  logic  to  evaluate  this  situation  better. 

o Add  off diagonal  costs  in  the  decision logic - i.e.  and a larger  cost  for 
making an  incorrect  decision. 

In the  case of radar  altimeters, which turn  on  very  late  in  the  run,  several  times  the 

wrong  replication  was  chosen. This  was due mainly to  the  fact   that   the  f i l ter’s  state 

estimates  are  biased  due  to  the  uncompensated  normal  operating  biases  contained  in 

the  measurements. 

For the  case of singleton  bias  failures  the  fault  tolerant  system  works  very 

capably.  Detection  speeds  are  very  quick  for  measurement  sensors  into  the  filter,  and 

also  adequate  for  input  sensors  although  they  are  typically  detected  an  order of 

magnitude  slower. The state  estimates  appear  to  have  the  quality of fault  tolerance, 

in  that  they  are  able  to  recover in  most  cases from the  effects of failure.  Moreover, 

the  fault  tolerant  system  has  the  desirable  property  that a failure  in  one  sensor 

affects  only  related  quantities of the no-fail  filter,  therefore,  transient  effects  are 

minimized. In addition,  for  the  case of bias  failures,  the  healers work quite  adequately 
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a s  well, however, it’s clear  that  the  effects of false  alarms  can  cause  considerable 

problems. 

3.3.2 Singleton Bias Failures - RSDIMU Sensor Configuration 

This section  discusses  observed  performance  attained  using a redundant  strap 

down inertial  measurement  unit  in  place of the  usual  body  mounted  rate  gyro  and 

accelerometer  measurements. In addition,  since  the RSDIMU also  provides  attitude 

outputs,  these  are  used  in  lieu of measurements  from  the  platform IMU. 

The impact of these  replacements  on  the FTS configuration  and  parameters  are 

as  follows: 

o No estimation of input  normal  operatmg  biases is performed 

o No detection  and  isolation is performed on RSDIMU based  measurements 
- since  it   has  its own on-board  fault  detection  and  isolation  logic. 

o The FTS reconfigures  itself  internally  to  operate  the  proper  number of 
detector/LR  computers  (in our example  this is 8, and  in  the  standard 
configuration  it is 20). 

o Process  and  measurement  noise  levels  chosen  for  the  no-fail  filter  remain  at 
the  levels  used  in  the  standard  sensor  configuration. 

The last item  seems  inappropriate  at  first - since  the RSDIMU provides  navigation 

quality  rather  than  flight  quality  information. However, if process  noise  levels  were 

set  appropriate  for  the RSDIMU measurement  noise  level,  the  no-fail  filter would 

ignore  most of the  other  measurements,  and  therefore,  detection of failures  in  these 

other  sensors would not  be  possible. 

For this  configuration  the  transient  effects  due  to  failures,  and  the  error time 

history  plots  are  very  similar  to  those  observed  for  the  standard  configuration  (they 
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a re  only  slightly  better),  therefore,  they will not  be  shown. The only  exception  to  this 

is for $,e, and h, where - since we are  not  estimating  normal  operating  biases  on P,Q, 

and R - they  appear  more  biased  during  maneuvers  than  the  standard  configuration. 

These  effects  can  be minimized by "tuning"  the  measurement  noise  parameters  assumed 

by  the EKF on P,Q, and R,  and  on $ 3 ,  and +. Estimation of normal  operational  biases 

for  the  rate  gyros will further  reduce  these  effects. However, since we are  only 

concerned with failures  in MLS. IAS, and RA sensors,  these  errors  don't  impact 

performance,  and  therefore  no  further  tuning was  performed.' 

Table 9 describes  the  average  detection  performance for  the RSDIMU 

configuration. It should  be  noted  that  there  were  no  false  alarms or missed 

detections  in  any of these  runs. However, since  under  this  configuration, we are  not 

considering  failures  in  any RSDIMU sensors  (i.e.  only MLS, IAS. and RA failures  are 

considered)  this  eliminates many sensors from consideration,  thereby making the 

detection  task  easier. 

Viewing Table 9 we see  that :  

o Detection  times  for  all  sensors  are  on  the  order of those  found  for  the 
standard  configuration  (see Table 8). 

o There  were  no  missed  detections. 

o MLS azimuth  is  the most difficult MLS sensor  to  detect  

o Although not  shown  explicitly  in  the  table,  detection  times  were  constant 
over  all  portions of the  flight  path. 

' I n   f a c t ,   f o r   t h i s   c o n f i g u r a t i o n ,   t h e   f i   I t e r   c o u l d  be c o l l a p s e d   t o   e l   i m i n a t e   t h e   a t t i t u d e  
channel  altogether - to  further  reduce  the  computat ional   requirements.  
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In  general,  the RSDIMU configuration  performed  very well. Although we expected 

to  see better  performance  and  detection  speeds  for  this  configuration, we observed 

only  slightly  better  performance.  Additional Monte Carlo  simulations of each 

configuration would be  required  to  provide a better  comparison. 

3.3.3 Simultaneous Multiple Bias Failures - Standard  Sensor  Configuration 

In this  section,  performance when two sensors fail a t   t he  same  instant of time, 

will be  examined. Only multiple failures in  like MLS measurements  were  considered  in 

this  study,  and will be  reported  herein. 

The FTS parameters  used  are  the  same  as  described  in  Section 3.2. The error  

profiles  for  these  failures  look  very much  like the  no-fail  case,  and  therefore will not 

be  presented  here.  In fact ,   af ter  a multiple MLS failure is correctly  detected a 

mission abort  is issued,  since  the  no-fail  filter  requires  at  least  one of each MLS 

measurement t o  operate. 

Table 10 describes  the  simultaneous  multiple  failure  performance of the  FTS. All 

multiple  failure  sample  runs  made  in  the  study  are  represented  here.  Since MLS 

azimuth is harder   to   detect   than MLS elevation or range,  azimuth  failures  were 

simulated  over  all  flight  conditions,  whereas MLS elevation  and  range  were  only  failed 

once.  Detection  speed  and  selectivity is very  good,  with  correct  detections  in  all 

cases  and  average  detection  times of 6.37, 0.2, and 0.15 for  azimuth,  elevation,  and 

range  sensors,  respectively. Over this  set  of runs  the  detection  times  were  basically 

constant  over  different  failure  levels  and  flight  path  segments.  Notice,  further,  that 

although  false  alarms  were  associated with  some of the  runs,   they did not  interfere 
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TABLE 9. SUMMARY OF AVERAGE BIAS  FAILURE  PERFORMANCE - RSDIMU  CONFIGURATION 

SENSOR 

Azm 

El 

IAS 

RA 

AVG. T I M E  TO 
DETECT (Seconds) 

0.42 

0.18 

0.09 

0.4 

0.15 

NO. OF RUNS NO. OF MISSED 
SIMULATED DETECTIONS 

5 0 

5 0 

5 0 

1 !I 

1 0 
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with the  correct  detection  and  isolation of this  class of failure. 

3.4 Performance with Non-Bias Failures 

As mentioned a t   t he   s t a r t  of this  chapter,  one of the  goals of the  study was to  

assess how  well the  developed FTS can  operate when failures of a non-bias  type  are 

encountered. This section  discusses  the  observed  robustness of the  system  under  the 

following failure modes: hardover.  null,  ramp,  increased  scale  factor,  and  increased 

noise  failures. A subsection  is  devoted  to  discussions  pertinent  to  each of these 

conditions. 

3.4.1 Hardover Failures 

The primary  attribute  required of an  FTS when hardover  failures might be 

encountered is fast  detection  times.  Ideally  one would like  to  remove  faulty 

measurements  before  they  are  used in the  navigation  filter.  This is particularly 

important  in  our FTS since  the  no-fail  filter is an  extended Kalman filter  (e.g. 

linearizations  are  about  estimated  states)  and  filter  divergence  can  occur  quickly. For  

this  reason, if redundant  sensors  are  available  and  hardover  failures  are a common 

problem, we advocate  the  use of voting  techniques  to  achieve  quick  hardover  failure 

detection  and  isolation. As we will see,   the FTS discussed'  in  this  section  provides  an 

alternative  approach i f  redundant  sensors  are not available. 

Since  hardover  failures  can  be viewed as  very  large  bias  failures, we should 

expect good  performance  from  the  developed FTS. In fact,  observed  isolation  and 

detection  speed is quite good - it  typically  takes  one  filter  cycle  (i.e. two 

measurement  samples)  to  detect a hardover  failure. 
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TABLE 10. SUMMARY OF MULTIPLE  BIAS  FAILURE  PERFORMANCE 

ML S 
S E N S O R   F A I L U R E  

T Y P E   L E V E L  

A z i m u t h  .3'( 100) 

E l e v a t i o n  .3'( loa) 

R a n g e   4 0 m  ( 1 Oa) 

A z i m u t h  .3'( loa) 

A z i m u t h  .3'(1Qu) 

F A I L U R E  
O X S E T  
T I M E  
" 
110.0 

70. 0 

7Q. 0 

70. !I 

255 

T I ? l E  TO 
D E T E C T  

0.6 

0.2 

0.15 

0.6 

0.65 

NIJMBER OF 
F A L S E   A L A R M S /  

S E N S O R   T Y P E  

0 

UPsz 

1 / P .  Y 

0 

1/Ay 
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Table 11 shows the  detection  performance  for a typical run. Hardover  failures  in 

indicated  airspeed, IMU theta,  and  roll  rate  gyros  are  simulated. Remember tha t  only 

one  replication of the  roll  rate  gyro is used by the  FTS, and  therefore,  no  direct 

redundancy is used  in  its  detection. 

The sample  time  for  the  system is 0.05 seconds  (e.g. 20 Hz) and  therefore  all 

three  failures  are  detected  in  one  filter  cycle. The fact  that  three  very  hard  failures 

occurred  fairly  close  to  one  another,  and did not  significantly  affect  the  performance 

of t he  FTS is encouraging. This  implies that   the  f i l ter  was able  to  recover  quickly 

from the  effects of failures. 

Figures 23, 24, and 25 show the  estimation  error  profiles  for  attitude,  rate  gyro 

biases,  and  accelerometer  biases,  respectively.  These  figures show how the  reset  logic 

can  directly  effect  filter  performance. From Table 10 we saw tha t  a false  alarm  in IMU 

phi  occurred  right  after  the  failed  roll  rate  gyro was removed.  This was directly  due 

to  the  large  reset  used  for  the  phi  state  and p bias  estimates  and  their  associated 

covariances. The filter  diverges  as a. result of the  reset,  and  cannot  recover  since 

both M U ' S  were  removed  (one  due  to a failure  and  the  other  due  to  the  false  alarm). 

The large  reset  was due  to  the  reset  logic  applying a reset  proportional  to  the  failure 

level - i t  was  designed  assuming  moderate  bias  failure  levels.  Since  the  failure 

estimates from the  detectors  may contain  significant  errors when hardover  failures  are 

encountered,  an  obvious  solution would be to  threshold  the  reset  to  remain  within a 

reasonable  range. 
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TABLE 11. DETECTION  PERFORMANCE  FOR  TYPICAL HARDOVER 

T I M E   T O  
SENSOR 

I A S  

0 

P 

F A I L U R E  MAG. 

205.78 m/s 

80' 

100 O/S 

ONSET T I M E  
(seconds) 

67.08 

114.05 

153.5n 

False Alarms 

Sensor Time of False Alarm 
( s e c o r i i  

9 -2 1S3.65 

QETECT 
7 5 Z i X S )  

0.05 

0.05 

0. n5 
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FIG. 24. RATE GYRO BIAS ESTIMATION ERROR - HARDOVER FAILURE 
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3.4.2 Null Failures 

" 

Null failures  pose  an  interesting  problem  for  the FTS. Although they may appear 

as a bias jump in the  measurement,  this  only  happens if the  actual  signal  level  is  not 

close  to  zero.  Essentially,  to  be  detectable,  the  signal  level must be  greater  than  the 

smallest  bias  level  detectable  by  the FTS. Moreover, the  effective  failure  level 

fluctuates as a function of t he  signal  level,  such  that  at  times i t  may appear as a soft, 

mid or hard  failure. In fact,  even if the  failure  is  correctly  detected,  the  healer  logic 

can  easily  be  tricked  into  believing  the  sensor  has  recovered  during  the  next  period 

of low signal  level. A single  sample  run,  which  contains  null  failures, will be  discussed 

in  this  section.  Certainly many  more  simulation  runs would be  required  to  generalize 

the  results  presented  here. 

Table 12 shows the  detection  performance  for a run with  null  failures  present. 

The first null  failure  effects  the IMU phi  measurement  during a banking  maneuver  (e.g. 

when the  signal  level  is  large),  whereas  the  second  failure  is in the  pitch  rate  gyro 

when its  signal  level  is  very  close  to  zero. The first  failure is detected  in 

0.15 seconds  (e.g.  three  filter  cycles),  however,  it is not  removed  quickly  enough  to 

prevent a roll  rate  gyro  false  alarm. The second  failure is not  detected,  as  expected, 

since  its  signal  level is very  small. I t  does,  however,  instigate a pitch  sensor  false 

alarm. 

Another  perspective  is  shown  in  the  estimation  error  profiles  for  this run, 

Figures 26-30. These  curves  clearly show the  coupling  effects  during  the  bank 

maneuver.  Notice  the  null  failure in + effects 4, 0. P, and Q, but it also  effects x,,, 
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yrw, x,,, yrw, A,, and A The encouraging  thing  to  note  here is tha t   the  FTS manages 

to  recover from the  first  failure. 

Y '  

The second  failure  requires some explanation  to  understand  what is taking  place. 

First of all,  one might assume  that  since  the  signal  level  on Q is small,  (see  fig. 6), a 

null  failure  shouldn't  impact  the  estimates  very much  (look a t  Q bias  errors  in 

figure 30, for  example).  However,  in  this  case  the  null  failure  in Q instigates a 8 false 

alarm. Note in  figure 7 tha t  8 is not  zero,  rather  it 's  changing slowly.  This removes 

all  attitude  measurements from the  filter.  Therefore, with Q=O, €)=constant. From this 

point  on  the  estimation  error  in €) fluctuates  as a function of the  difference  between 

the  true  signal  and  this  constant,   plus  any  other  contributions from the  filter  update 

using  the  rest of the  measurements  (see fig. 28). 

Although  very few runs  were made  with  null failures,  we would anticipate  the 

following  problems: 

o Occasionally  dynamically  coupled  sensors will be  chosen  (e.g. 4 when P fails, 
El when A, fails,  etc.) 

o Filter  divergence  when  detections  are  too slow, and  the  effective  failure 
level is large. 

o Declaring a faulty  sensor  "recovered" when a low signal  level is monitored 
for a period of time. 

On the  other  hand  these  results  are  encouraging  since: 

o They  show that  null  failures  can  be  detected  without  any  modifications  to 
the  original  method. 

o The bias jump failure  models  are  "robust"  enough  to  provide  coverage  for 
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these  failures - however,  either a bet ter  model or more  heuristics will be 
required  for  reliable  detection,  and  healer  operation. 

3.4.3 Ramp Failure 

Ramp failures  appear  in  the  measurements as slowly increasing  biases - in  other 

words,  at  every  successive  step, a new, incremental  bias jump is  applied  to  the 

measurement. If the  slope of the  ramp  failure  is  lar.ge,  the  incremental  bias jump is 

large,  and  it will appear much  like a bias  failure would. In this  case we would expect 

the  FTS to  detect  it  without  modification. However, if the  slope of the  failure is small, 

the  failure may go undetected  for a long  period of time, or i t  may create  a drift  in 

the  no-fail  filter  estimates  and  never  be  correctly  identified. In this  section, FTS 

performance  under  ramp  failures will be  discussed  by  means of a typical  example. 

Performance  for a typical  sample  run  is  shown  in  Table 13. Ramp failures  are 

simulated  for Azm,  8, P ,  and A, sensors.  The failure  levels  chosen  in  the  table  reflect 

the  slope  required  to  attain a 3a normal  operating  bias  in  one  second  for  each  sensor. 

Figures 31-36 show the  estimation  error  and A/C track  error  profiles for the  same 

case.  

From Table 13 we see  that  all  simulated  failures  are  correctly  detected  and 

isolated  by  the FTS. Sensors which are   t reated as measurements  are  detected  slightly 

fas ter   than  those  t reated as inputs  to  the  no-fail  filter. This was found  to  be a 

common trait of the  developed  system.  Another  characteristic  for  ramp, as well as 

other  non-bias  failures,  is  the  induced  false  alarms  caused by the  reset   af ter   the  

failure  is  correctly  detected. This is observed  in  the 4 and RA failures  in  this  case. 

The false  alarm  in MLS elevation,  however,  is  not  due  to  the  reset  logic,  but  rather  to 
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TABLE 12. DETECTION  PERFORMANCE  FOR  NULL  FAILURES 

SENSOR 
TYPE 

0-1 

Q- 1 

FAILURE 
ONSET TIME 
1 seconds ) 

65.75 

111.65 

False Alarms 

Sensor Time of False Alarm 
(seconds) 

P 

8-2 
65.8 
121.5 

TIME TO 

0.15 

X 
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the  FTS’s inability  to  correctly  distinguish  between  the  vertical  accelerometer  ramp 

failure  and MLS elevation.  However,  as  seen  previously  in  other  examples,  this  type of 

false  alarm  (due  to  indistinguishability)  doesn’t  generate a missed  alarm,  rather  it 

simply takes  longer  to make a correct  detection,  and  causes more of a disruption  to 

the  state  estimates.  

The  estimation  error  profiles  again show the  effects of a hard  reset .  I t  is 

especially  evident  in  the 4 estimation  error.  Otherwise,  the FTS behaves  quite 

reasonably,  considering  the  number of failures  simulated  in  this  short  run. 

3.4.4 Increased  Scale  Factor  Failures 

Increased  scale  factor  errors  are  quite  different from  bias  failures,  and  therefore 

one  should  expect  to  see  degraded  performance  for  this  class of failures.  Consider 

the  following: a scale  factor  error may look  like a constant  bias  failure - if the  

signal  level is constant;  or i t  may look  like a time  varying  failure - if the  signal  level 

varies. In between  these two extremes,  the  failure will look  like a combination of the 

two. In this  section,  performance of the FTS when increased  scale  factor  errors  are 

introduced will be  discussed. 

Several  runs  were  made,  initially,  with  the  healer  logic  running,  however,  since 

the  failures  are a function of the  signal  and  noise  levels,  failed  sensors would heal 

a f t e r  a short  period of time  and we found  they  could  not  be  used  reliably  in  their 

present form (a  bias  failure mode is  implicitly  assumed  in  the  formulation of the 

healers). The run  presented  in  this  section,  therefore,  has  the  healers  turned off. 
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TABLE 13. DETECTION  PERFORMANCE  FOR  RAMP  FAILURES 

SENSOR 
TYPE 

Azm 

8-1 

P-1 

FA1 LURE MAG. 

.009O/s 

.3O/ s 

. 0c15°/s/s 

. 5m/s2/s 

False Alarm 4 Healings 

8 -2 

0,*2 

El -1 

RA- 2 

RA- 1 

FAILURE 
ONSET TIME 
7 seconds) 

66.85 

112.25 

154.1 

223.9 

TIME TO 
MTECT 
(seconds) 

2.30 

I . 9 
4.5 

6.6 

Time o f  Time o f  
Fa1 se Alarm Heal inas 
7 seconds) (seconds) 

115.95  121.05 

159.6  171.6 

230.9  233.9 

255.9  258. P 

261.85 X 
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FIG. 33. ATTITUDE  ESTIMATION ERROR - RAMP FAILURES 
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A typical  run  containing  scale  factor  errors  is  shown  in  Table 14. Only input 

failures  are  considered,  since  they  are  the  only  sensors  with  normal  operational  scale 

factor   errors .  In this  run,  failures  are  simulated in A,,,  A,, P, and Q sensors. 

Surprisingly,  all  but  the  lateral  accelerometer  failures  were  correctly  detected. The 

failure  times  for  this  run  were  chosen so tha t  

o P 8c Q failures  occur when their  respective  signal  levels  are low 

o A, failure  occurs when its signal  level  is  large  (as  it  always  is,  since  it 
measures  the  gravitational  force) 

o A failure  occurs when its  signal is a t  a moderate  and  variable  level 
Y 

From Table 14 we see  that  both  gyro  failures  and  the  vertical  accelerometer 

failure  were  all  correctly  detected, with detection  times  ranging from 0.9 to  

3.5 seconds. The lateral  accelerometer  failure was not  detected;  this  could  be  caused 

by the  lateral  accelerometer  bias  estimte  tracking  the  failure  before  the  input  sensor 

failure  estimates  have time to  converge. 

The false  alarms  in Table 14 can  be  grouped  into  those  that  are a result of 

transients  after  the  reset  ($,El,8), and  those  that   are  due  to  the missed  detection of 

the  lateral  accelerometer (Rng.A,). 

The  estimation  and A/C track  error  profiles  are  shown  in  Figures 37-42. In 

general,  the  filter  estimates  are much less fault  tolerant for this  type of failure. Some 

of the  t ransients  in the  velocity,  attitude  and  accelerometer  profiles  are  unacceptably 

large. In addition,  the A/C track  errors  were  observed  to  be  the  largest  for  this 

failure  type. 
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The  estimation  error  curve  for  the  lateral  accelerometer  bias  looks  very  noisy. 

The  signal  plotted is actually  the  effective  bias  due  to  the  scale  factor  failure  and  all 

other  unmodeled  effects,  however,  due  to  a  recording  error  the  noise  signal  itself  was 

not  subtracted.   Since  this  scale  factor  error  curve  consists of a  time  varying  bias 

component  and  an  increased  noise  component,  the  correct  curve  would  look  exactly 

like  the  one  shown,  but  with  the  noise  portion  scaled down by the  scale  factor.  One 

plausible  reason  for  the FTS’s inabili ty  to  detect   this  failure is tha t   t he  rms value of 

this  curve is close  to  zero - violating  the  basic  premise  that  a  failure  really is a bias 

shift   in  the  signal.  Even if  there  is  a  misdetection,  as  this  example  shows,  the FTS 

algorithm  can  still  identify  other  sensor  failures: 

3.4.5 Increased Noise  Failures 

Increased  noise  failures  are by nature  most different  from  the  underlying  bias 

failure  assumptions  used  in  the FTS. Since  the r m s  value of the  effective  failure  level 

is essentially  zero,  detections  only  occur if the  noise  level is large  for a short  period 

of time.  This  section  discusses  the  performance of the  fault  tolerant  system  when 

increased  noise  failures  are  simulated. 

Although,  from  the  last  section, we know tha t   the   hea le rs   a re   no t   adequate   for  

these  types of failure  modes,  in  this  section  the  healers  were  left  operational  in  the 

FTS so t ha t   t he   r eade r  would  be  exposed  to  this  aspect of the  problem. 

Table 15 details   the  failure  performance of a  typical  sample  run  containing 

increased  noise  failures. The reader  will notice  that  the  detection  time  is  for  the first 

detection - since many  false  healings/re-detections  occur  in  this  run  with  the 
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TABLE 14. DETECTION  PERFORMANCE  FOR  INCREASED  SCALE  FACTOR  FAILURES 

SENSOR FAILURE MAG. 

A -1 
Y 

2.5 (lOa> 

.4*-1 2.5 (lQa) 

P- 1 .l (loa) 

cl- 1 .1 (loa)- 

FAILUgE 
ONSET TIME 
(seconds) 

66.45 

1.51.8 

110.3 

225.95 

False Alarms (Healers  are  turned o f f )  

Sensor Time o f  False Alarm 
(seconds) 

Rng-2 m .  65 
8 -2 114.75 
El -2 154.15 

A X  181.1 
8 234.4 

TIME TO 

X 

1.85 

c). 9 
3.5 
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healers  running. The detection  times  appear  to  be  quite  random  for  this  class of 

failure,  except  that  detection  times  are  uniformly  longer  for  input  sensors  (since  they 

are  smoothed by the  no-fail  filter)  than  for  measurement  sensors. 

The important  finding  is  that  all  the  failures  were  correctly  detected  and  that 

there  were  no  false a1,arms in  the  run. Moreover, the  constant  healing  and  detection 

with its  associated  filter  reconfiguration  and  reset did not  interfere with correctly 

detecting  the  failures.  Certainly  the  detection  times  for  inputs  are  relatively  long,  but 

the  fact   that   the  simple  blas jump  model  works a t  all  is  encouraging. 

Flgures 43-47 show the  error  estimation  profiles  for  this  run. The impact of the 

successive  resets  can  be  clearly  seen  in  these  figures. Notice tha t   the   e r rors   a re  

bounded  and  the  filter  doesn’t  diverge  due  to  these  repetitive  disturbances. In fact ,  if 

a more  robust  healer - or no  healer  at  all - were  used  the  performance would be 

somewhat  better. 

3.5 Performance  Summary  and  Overall  Evaluation 

The previous  four  sections  have  described  in  detail  the  performance of the 

developed  fault  .tolerant  system  under a variety of simulated  failure  conditions. In 

these  sections,  characteristics,  which  appeared  in  our  study  to  be common to a 

particular  class of failure,  were  highlighted  for  discussion.  This  section will attempt 

to  generalize  the  major  findings. 

Table 16 shows an  overall  performance  summary  under  the  different  simulated 

failure  conditions. As can  be  seen from the  f irst  column, there  was complete  coverage 

153 



TABLE 15. DETECTION  PERFORMANCE  FOR  INCREASED  NOISE  FAILURES 

TIME TO 
SENSOR 
TYPE . 

A,-1 

P- 1 

El -1 

8-1 

FA1 LIJRE MAG. 

.98m/s/s (100) 

.2O/S (loa) 

.3O/S ( 100) 

2.3' (100) 

FA1 LURE 
ONSET T P I E  
7 seconds 1 

113.05 

68.35 

152.6 

223.35 

Incorrect Heal ings/Detections 

Sensor  Number of Occurrences 

A Z - 1  4 

P- 1 None 
E l  -1 16 

( F I R S T )  
DETECT 
(seconds) 

30.65 

55.75 

0.2 

2.0 

8- 1 8 
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TABLE 16.  . OVERALL  PERFORMANCE  SUMMARY 

FAILURE 

SEFJSOR 

A x  

.Y 

A Z  

P 

4 

R 

Azm 

E l  

Rng 

IAS 

Q 
e 

9 

R A  

3 . 3  

I.? 

0 . 7 9  

0 . 5  

1.5 

n. n5 

n. 7 

6.6 

4 . 5  

SINGLETON INCREASED  INCPEASED NULL HARDOVER MULTIPLE RAMP 
RST. IMlJ 

BIAS  NOISE SCALE  FACTOR FAILURE  FAILURE  FAILURE  FAILURE 
SINGLETON 

(SEC)  (SEC)  (SEC)  (SEC)  (SEC)  (SEC)  (SEC)  (SEC) 
BIAS 

4.65 

14.75  

N.D. 42.  S 

13.32   55 .75  

8 . 1 2  

6.1 

n. 9 

0.15 1.5 

17.08 

1.57 

0 . 5 7  

n. 43 

0 . 8  

0 . 3  

n. 05 

0 . 1 5  

0 . 0 8  

0. 637 2 . 3  n. 42 

0.2 0.18 

0.15 0.m 

0.4 

1.9 

0 . 1 5  
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for  bias  type  failures with the  exception of A,. The numbers  in Table 16 depict  the 

average time to  detect over the available  runs.  Singleton  bias  failures were averaged 

over 3u,5u,8u,10u, and 12u bias levels.  Referring t o  Table 16. input  sensor 

(accelerometer  and  rate  gyro)  bias  failures  were  detected  and  isolated much slower 

than  the  other  sensors. That is, for  the same  level bias  type  failure,  the  detection 

speed  for  input  sensors  were  about 10 times  slower than  that of the measurement 

(MLS,IMU,IAS,RA) sensors. This is because  the  input  sensor  failures  have  to  propagate 

through  the no-fail  filter dynamics  in order  to  get  detected. In our  study,  the 

redundancy  for  the  input  sensors were  utilized  only  for  backup.  Hence, the 

comparison of like  input  sensors may improve the  detection  speed  for  these 

instruments. 

The second column in Table 16 shows the  average  time-to-detect  for 1Ou 

increased  noise  type  failures. For these  failures,  the  detection  speed  for  input  sensor 

failures was about 20 times  slower than  that of measurement sensor  failures. On the 

other-hand,  the  average  time-to-detect  for  the 100 level increased  noise  input  sensor 

failures  is  about 10 times  slower than  that for 3-5u bias  type  failures. Similarly, for 

measurement  sensors,  the  average  time-to-detect in the  increased  noise  failure  case 

is about twice as slow as  that  in  the  bias  type  failure  case. This is to be expected 

since  the  bias  type  failure model used by the  detectors is a  poor model for  increased 

noise  type  failures. As before, if  dual or more redundancy is available  for the  input 

sensors  then  the  comparison monitoring of like  sensors may improve the  detection 

performance. 

The third column in Table 16 shows the  average  time-to-detect  for  increased 
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scale  factor  failures  with a 10u level.  Increased  scale  factor  failures  were  easier  to 

detect  than  increased  noise  type  failures  since  the  bias-type  failure model is 

adequate  in  emulating  the  sensor  output  behavior  under a scale  factor  failure. 

Columns four  and five  show the  average  time-to-detect  for  null  and  hardover  failures. 

Since  hardover  and  null (if there  is a sizable  signal  level  in  the  measurement)  failures 

look  like a large  increased  bias jump to  detectors,  they  were  identified  within 

approximately  to 2 sampling  intervals. The relatively  longer  time-to-detect  for  null 

failure in the  rate  gyros  indicates  the  need  for a vehicle  maneuver  to  detect  this  type 

of failure. 

Multiple sensor  failure  detection  performance  levels  are  given  in  the  next 

column. As discussed  in  Section 2.4.2 simultaneous  failures  were  considered  only  for 

t h e  MLS sensors  since  these  failures  represent MLS antenna  failures. The detection 

speed  for  multiple  failures  is  comparable to  that  for  the  singleton  bias  failures. I t  is 

worth  noting  that a simultaneous MLS sensor  failure  never  introduced a false  alarm 

arising  from  the  selection of a singleton  failure  in  the  associated  instrument. The 

detection  performance  for  ramp  failures is given  in  the  last  column. The failures 

correspond  to a ramp  failure  level  equal  to 3 times  the  normal  operating  bias in one 

second. The detection  speed  for  ramp  failures  was  slightly  slower  than  that  for  the 

corresponding  bias-type  failures. 

The final  column  summarizes  bias  failure  performance  using  the RSDIMU sensor 

configuration. In this  case  note  that  detection  times  are  comparable  to  those 

obtained  with  the  standard  configuration. In addition,  no  false  alarms or missed 

detections  were  observed with the RSDIMU configuration. 
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The no-fail  filter's  state  estimates  were  "fault  tolerant" - Filter  divergence, 
caused  by  failures,  occurred  infrequently  and  the  absolute  level of filter 
e r rors  was  within  tolerable  bounds  for  the  automatic  landing  system  to 
function  properly. 

The reconfiguration  logic  worked  very well for  bias  failures - providing 
selective,  moderate  resets.  For  non-bias  failures,  resets  were  generally  too 
hard.  Suggestions  have  been  offered  for  resolving  these  problems. 

Healer  mechanisims  worked well for bi.as. hardover,  and  ramp  failures,  but 
were  inadequate - in its present form for  other  types of failure  modes. 

As documented  in  this  chapter,  detection  speeds  were  quite good for  bias 
failures  (with  failure  levels  between 3 and 100). with detection  times  between 
4.65 and 14.65 seconds  for  input  sensors,  and 0.08 to  1.57 seconds  for  
measurement  sensors. 

Detection  speeds  for  non-bias  failures  were in general  adequate. For 
increased  noise  failures  the  time-to-detect was random. 

The FTS was generally  able  to  distinguish  between  failures in  dynamically 
coupled  sensors,  (for  example, 4 and P). However, the  uncompensated 
normal  operating  errors  in  the  sensors  at  times  exacerbated  this  problem. 

False  alarms  were  usually  due  to  either: 

. uncompensated  normal  operating  errors 

. fi l ter   resets which  were too "hard" 

. occasional  indistinguishability of dynamically  coupled  sensors 

. secondary  effect of a missed  detection. 

Missed detections  were  usually  due  to  either: 

. the  normal  operating  bias  filter  estimating  out its effects  

. a simulated  failure  level  that was too low relative  to  the  signal,  noise, 
and  bias  levels  for  that  sensor 

. in  the  case of hardover  and  null  failures, i f  the  failure  was  not 
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detected  very  quickly  the  filter would diverge. 

o The method  was  observed  to  be  surprisingly  robust  with  regards  to  non-bias 
type  failures. However, explicit tests for  non-bias  failure,  (either model 
based or heuristic  in  nature) would be  required  for  reliable  detection. 

o Use of t h e  RSDIMU configuration  provided: 

. slightly  better  estimation  performance 

. no  false  alarms or missed  detections  were  observed 

. detection  times  were  comparable  to  the  standard  configuration. 
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4. CONCLUSIONS AND  RECOMMENDATIONS 

In this  study, we have  developed a fault  tolerant  system  design  methodology  for 

general  nonlinear  stochastic  dynamic  systems. In particular,  we have  applied  the 

developed  methodology  to  the  design of a sensor  fault  tolerant  system in aircraft  

navigation,  guidance,  and  control  systems  in a Microwave  Landing System  environment. 

The fault  tolerant  system  provides  aircraft  position,  velocity,  attitude,  and  sensor 

normal  operating  bias  estimates  tolerant of faults  in  the  ground-based  navigation 

aids,  and  on-board  flight  control  and  navigation  sensors. We have  analyzed  the 

estimation  and  failure  detection  performance of the  software  implementation of our 

design  (called FINDS) on  the  six-degree-of-freedom  nonlinear  digital  simulation of the 

ATOPS aircraft .  

The state  and  normal  operating  sensor  bias  estimation  performance of the 

separated EKF algorithm  in FINDS compared  favorably with that  of other  navigation 

filters employed  within the same  environment.  Although  sensor  failures  are  modelled 

as bias jumps  in FINDS,  we have  investigated  the  failure  detection  performance  on 

other  types of sensor  failures  as well. The failure  detection  and  isolation  performance 

of FINDS was excellent  for  bias  failures with the  detection  speed  considerably  better 

for  measurement  sensors  such as MLS than  for  input  sensors  such a s  accelerometers. 

The failure  detection  performance  for  non-bias  type  failures was surprisingly  good, 

although  healing  tests  designed  for  bias  type  failures  caused  problems,  especially  for 

increased  noise  type  failures. The detection  speed  for  catastrophic  failures  such as 

hardover w a s  extremely  fast. 
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The  following is a list of our  recommendations  for  future  study: 

o Although  the  simulation  employed was fairly  realistic, it did not  account  for 
s t ruc tura l  modes and  lever  arm  effects. We believe that  the  sensit ivity of 
t h e  FTS to   these  modelling errors  can  be  uncovered  by  testing FINDS using 
flight  recorded  data. 

o In this  study,  computational  efficiency  was  not a major concern.  Hence,  the 
developed  algorithm  does  not  currently  run  in  real-time.  Analysis of the  
simulation  data  suggests  that  there  are  quite a number of simplifying 
assumptions  which  can  be  introduced  into  the  filter/detector  structure  for 
significantly  improving  computational  efficiency. 

o There  are  a number of places in FINDS which can be modified for  improved 
failure  detection  performance.  For  instance, a better  internal model for 
wind dynamics,  the  use of standby  input  sensors  for  failure  detection,  and a 
better  integration  routine  for  the  kinematic  equations  are  such  examples. 

o Although the  developed  sensor  failure  detection  algorithm, which is designed 
for  bias  type  failures,  proved  to be' capable of identifying  other  types of 
non-bias  sensor  failures,  it  is desirable  to  be  able  to  classify  these  non- 
bias  failures  as well. Such a classification would be  useful  in employing 
different  types of healing  tests  for  different  types of sensor  failures. 

o Although FINDS was tes ted within an  MLS environment,  the  developed 
methodology is quite  general  and  applicable  to  other  types of sensor 
environments  as well. For  instance, FINDS can  be  applied  to  navigation 
under VORTAC, and  satellite  position  fixing  systems with appropriate 
modifications. 
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APPENDIX A 
DEFINITIONS OF USEFUL QUANTITIES 

This  appendix  basically  defines  the  quantities  used  in  the  no-fail filter and 

detector  derivations.  Specifically,  the following quantities  are  defined  herein: 

A se t  of abreviations,  used  to  condense  the  descriptions,  are given below: 

o se = sine(B) 

o ce = cosine(8) 

o te = tangent(@) 

o s e c e  = secant(8)  

o XG = Latitude  to  origin of G frame 

Descriptions: 
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where u = +-I/+.+ 

0 TBI T ~ ~ T ~ ~  Ti;~Ti~ 
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